Short-Term Reversals and Longer-Term Momentum Around the World: Theory and Evidence

> Narasimhan Jegadeesh Emory University

Jiang Luo Nanyang Technological University

> Avanidhar Subrahmanyam UCLA

Sheridan Titman University of Texas at Austin

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

On the cross-sectional predictability of stock returns

This research has accumulated to a veritable "factor zoo"

- The number of these strategies raises concerns about data mining (Harvey, Liu, and Zhu (2016) and Chordia, Goyal, and Saretto (2020)).
- On the other hand, we can predict returns using past returns alone

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Fama-MacBeth monthly regression on lagged returns

$$r_{i,t} = \rho_0 + \sum_{j=1}^{12} \left(\rho_j \times r_{i,t-j} \right) + \epsilon_{i,t}$$

Panel A: U.S. stocks							
Period	ρ_1	ρ_2	ρ ₃	ρ_{12}	$\sum_{i=2}^{12} \rho_i$	$\chi^{2}(12)$	
1931 to 2020	-0.0450	0.0022	0.0181	0.0181	0.1157	354.6	
	(-13.54)	(0.76)	(6.28)	(7.64)	(7.01)		
1931 to 1960	-0.0748	0.0012	0.0264	0.0265	0.1297	181.1	
1	(-10.66)	(0.19)	(4.08)	(4.94)	(3.43)		
1961 to 1990	-0.0480	0.0027	0.0197	0.0267	0.1630	272.5	
	(-9.72)	(0.63)	(4.78)	(7.96)	(7.01)		
1991 to 2020	-0.0121	0.0027	0.0082	0.0011	0.0544	32.52	
	(-2.69)	(0.61)	(2.07)	(0.35)	(2.51)		
			(
Panel B: Non	-U.S. stock	s					
1991 to 2020	-0.0158	0.0016	0.0102	0.0091	0.0761	96.28	
	(-3.62)	(0.45)	(3.16)	(3.42)	(4.86)		

Momentum and Reversals

Momentum at 3-12 month horizons

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

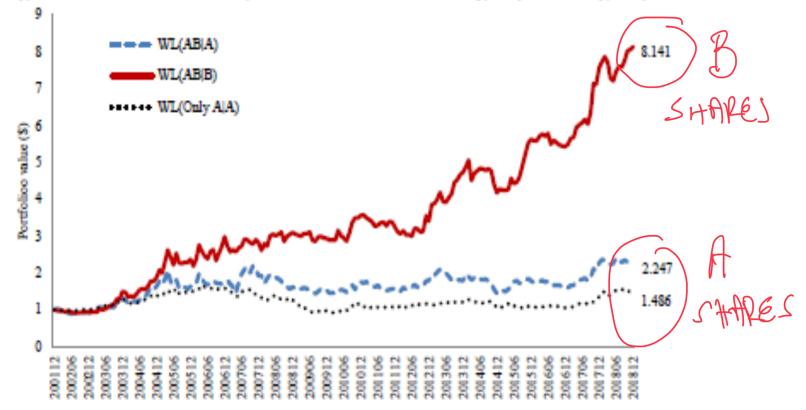
reversals at monthly horizons

What causes momentum?

- Informed investors make rational decisions
- ► Uninformed investors are "quasi-rational" → underassess the quality of signals they do not themselves produce (Odean (1998) and Luo, Subrahmanyam, and Titman (2021)).
- Uninformed provide "too much liquidity" to their informed counterparts which causes momentum.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Absorption by risk averse agents of noise trades unrelated to fundamentals.
- ▶ Noise trades temporarily move prices away from fundamentals.
- These deviations are corrected when noise trades are reversed and when information is revealed. These corrections generate reversals.


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Our setting (EARLIER PAPER WITH ANDY CHVE) • Different share classes on same firm

- In China, A and B shares \rightarrow different clienteles.
 - A mostly retail
 - Foreign institutions virtually absent in A but materially present in B
 - Domestic institutions not allowed in B

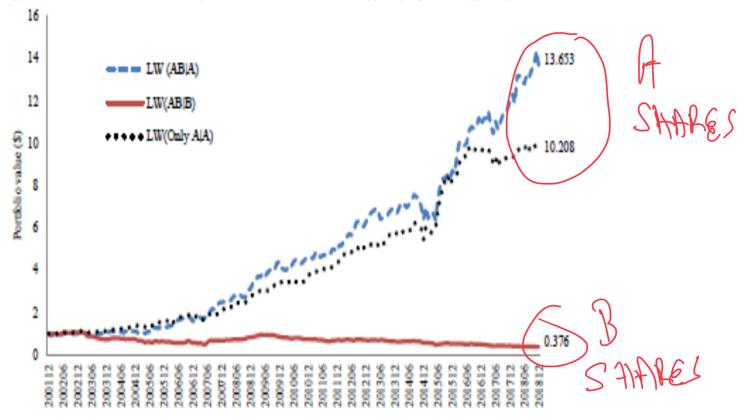

Momentum profits, plotted

Figure 3A Cumulative monthly returns to momentum strategies (value-weighted)

Monthly reversals, plotted

Figure 4B Cumulative monthly returns to reversal strategies (Equal-weighted)

The evidence so far

- A shares have more noise traders which means more reversals
- B shares are traded mostly by institutions which means more momentum arising from underreaction to fundamentals

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Goyal, Jegadeesh, and Subrahmanyam

Examine a number of explanations for momentum

・ロト・日本・モト・モー ショー ショー

find underreaction is the most likely cause

Our paper

- There is a "gradual" transition from reversals to momentum as lag length increases
- We provide a model that allows for this transition
- Model features:
 - Two types of risk-averse active investors and noise traders
 - Risk-averse investors underreact to information, and absorb noise trades at a premium
 - Noise trades have varying horizons
- Model yields new empirical implications, which receive support

The economic setting: Assets

Risky stock traded at Dates 0, 1, 2, and 3.

• Its liquidation value at Date 4 is θ , where $\theta \sim N(0, \nu_{\theta})$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Supply of stock normalized to 0.

Risk-free asset; price and return are set to 1.

Investors

Unit mass of risk-averse active investors Each has standard exponential utility:

$$U(W_{i4}) = -\exp(-AW_{i4}),$$

where W_{i4} is the investor's final wealth.

- Noise traders
 - At each of Dates t (t = 1, 2, or 3), a new noise demand z_t is drawn from $N(0, \nu_{z_t})$.
 - $(1 \mu)z_t$ is unwound at Date t + 1; the rest of this demand, μz_t , is unwound at Date t + 2.
 - The net noise demand is z₁ (z₂ + µz₁) (z₃ + µz₂) at Date 1 (2) (3).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Information

Date 0: Starting date; no information

- Date 1: Public signal f = θ + ξ + ε + ζ; ξ (ε) (ζ) drawn from N(0, ν_ξ) (ν_ε) (ν_ζ); can be an analysts' forecast or managerial guidance
- Date 2: A second public signal F = θ + ξ + ε; can be an earnings announcement
- Date 3: Mass λ of "informed" active investors observe a private signal s = θ + ξ.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Beliefs

Uninformed investors underassess the informativeness of s.

- Suppose $\theta = \theta_1 + \theta_2$, where $\theta_1 (\theta_2)$ is mean-zero normal with variance $\nu_{\theta_1} = \kappa^{-1} \nu_{\theta} (\nu_{\theta_2} = (1 \kappa^{-1}) \nu_{\theta})$.
- Uninformed investors believe that s = θ₁ + ξ, so s reveals only the component θ₁.

Correspondingly, they believe f = θ₁ + ξ + ϵ + ζ and F = θ₁ + ξ + ϵ.

Intuition

Noise traders cause reversals

- Informed traders' underreaction to long-term fundamentals causes momentum
- ► Shorter noise trader horizons → short-term reversals; longer noise trader horizons implies reversals attenuate momentum
- Reversals are attenuated following information releases (due to underreaction)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 More noise trading implies stronger reversals and less momentum

Reversal and momentum measures

The short-term predictability measure:

$$\begin{split} \mathcal{S} &= \frac{1}{3} \bigg[\mathrm{Cov}(P_1 - P_0, P_2 - P_1) \\ &+ \mathrm{Cov}(P_2 - P_1, P_3 - P_2) + \mathrm{Cov}(P_3 - P_2, P_4 - P_3) \bigg], \end{split}$$

The long-term predictability measure:

$$\mathcal{L} = \operatorname{Cov}(P_2 - P_0, P_4 - P_2),$$

(ロ)、(型)、(E)、(E)、 E) の(()

Simple case with closed-form solution

- λ = 0; a converging case where the mass of uninformed relative to informed investors is large.
- Uninformed investors directly learn the signal s.
- ▶ The Date-3 noise trade $z_3 \equiv 0$, so that the Date-3 price fully reveals informed investors' private signal *s*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Further, we assume that $0 \le \mu \le 1$.
- [general case illustrated numerically]

The case without noise trades

That is, $z_t \equiv 0$ and $\nu_{z_t} = 0 \ \forall t$.

• The long-term serial covariance $\mathcal{L}^{K} > 0$.

All short-term autocovariances are also positive.

The case with noise trades

Noise trades arise at Dates 1 and 2 (i.e., $\nu_{z_1} = \nu_{z_2} = \nu_z > 0$). Let $\nu_z \in [U_1, U_2]$.

• If μ is sufficiently small, then long-run predictability $\mathcal{L} > 0$.

- Short-term predictability S < 0.
- As ν_z increases, for sufficiently small μ, L and S decrease
 (L becomes less positive).
 (S becomes more negative).

Skipping a period and momentum profits

▶ Define a parameter \mathcal{L}^*

$$\mathcal{L}^* \equiv \operatorname{Cov}(P_2 - P_0, P_4 - P_3),$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We obtain the following result:

Skipping a period enhances the momentum effect, i.e., *L*^{*} > *L*.

Longer-lag return predictability

▶ Recall that S < 0

Define two parameters:

$$\begin{aligned} \mathcal{S}_{(2)} &= \frac{\operatorname{Cov}(P_1 - P_0, P_3 - P_2) + \operatorname{Cov}(P_2 - P_1, P_4 - P_3)}{2}, \\ \mathcal{S}_{(3)} &= \operatorname{Cov}(P_1 - P_0, P_4 - P_3). \end{aligned}$$

•
$$S_{(3)} > 0.$$

If μ > 0, then as ν_z increases from zero, S₍₂₎ is first positive and then turns negative.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Return predictability around earnings announcement dates

- Let Cov_E ≡ Cov(P₂ − P₁, P₃ − P₂) denote the covariance around the earnings announcement
- Provided that µ is sufficiently small, and F is not too imprecise, Cov_E > S (underreaction dominates reversals).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Empirical Implications

Markets transition from reversals to momentum

- reversals at short lags
- weak predictability at longer lags
- momentum at even longer lags.
- Momentum profits ↑ when we skip a month between formation and holding periods
- Reversals \$\geq\$ after earnings announcements
- ▶ \uparrow Momentum $\rightarrow \downarrow$ reversal profits (across countries and time)
- Countries with ↑ noise trading have ↑ reversals
- Short-term reversals
 when absolute order imbalance of retail investors

Momentum portfolio returns with and without skip-a-month

Panel A: U.S. stocks (193101 to 202012)

Panel A1: Sort by return from month $t - 12$ to $t - 2$ (skip-a-month)							
	Winner-Loser	Decile 1	Decile 2		Decile 9	Decile 10	
Mean	0.0116	0.0060	0.0096		0.0149	0.0175	
T-stat.	(5.26)	(1.93)	(3.71)		(7.54)	(7.65)	
Panel A2: S	Panel A2: Sort by return from month $t - 12$ to $t - 1$						
Mean	0.0057	0.0097	0.0103		0.0137	0.0154	
T-stat.	(2.39)	(3.01)	(4.08)		(7.03)	(6.85)	
Panel A3: Difference between Winner – Loser returns in Panels A1 and A2							
Difference	0.0059						
T-stat.	(10.23)						

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Panel B1: Sort by return from month $t - 12$ to $t - 2$ (skip-a-month)							
	Winner-Loser	Decile 1	Decile 2		Decile 9	Decile 10	
Mean	0.0108	0.0002	0.0010		0.0107	0.0110	
T-stat.	(3.89)	(0.05)	(0.37)		(5.17)	(3.92)	
Panel B2: S	Panel B2: Sort by return from month $t - 12$ to $t - 1$						
Mean	0.0084	0.0031	0.0006		0.0102	0.0115	
T-stat.	(2.71)	(0.83)	(0.24)		(4.94)	(4.14)	
Panel B3: Difference between Winner – Loser returns in Panels B1 and B2							
Difference	0.0025						
T-stat.	(3.41)						

Panel B: Non-U.S. stocks (199101 to 202012)

Lagged return×earnings announcement dummies

$$r_{i,t} = \rho_0 + \sum_{j=1}^{12} (\rho_j \times r_{i,t-j}) + b \times EAD \ Dummy_{i,t-1} + \phi \times EAD \ Dummy_{i,t-1} \times r_{i,t-1} + \epsilon_{i,t}$$

Panel A: U.S. stocks (197201 to 202012)

	ρ_1	ρ_2	$ ho_3$	 $ ho_{12}$	Ь	ϕ
Mean	-0.0367	0.0036	0.0126	0.0113	-0.0004	0.0246
T-Stat	(-8.59)	(1.11)	(4.06)	(4.37)	(-0.85)	(7.12)

Panel B: Non-U.S. stocks (199206 to 202012)

	ρ_1	ρ_2	$ ho_3$	ρ_{12}	Ь	ϕ
Mean	-0.0304	0.0027	0.0127	0.0093	0.0014	0.0208
T-Stat	(-6.14)	(0.59)	(3.53)	(2.54)	(1.19)	(3.99)

Momentum (*MOM* - past 2-12mo) and reversal (*REV* - past 1mo) profits across countries

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

	(1)	(2)
	REV	REV
МОМ	-0.166	-0.194
(<i>t</i> -stat.)	(-6.10)	(-6.35)
Constant	0.00715	0.00847
(<i>t</i> -stat.)	(19.72)	(6.24)
Month FE	Yes	No
No. of Obs.	10,325	11,045
Adj- R^2	0.170	0.049

Time-series correlations between reversal and momentum profits, country-by-country

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

	Corr(<i>MOM</i> , <i>REV</i>)
Average	-0.2158
Median	-0.2510
% negative	89.7%

Culture and noise trading

- We consider two cultural attributes previously considered by others
 - Individualism (IDV Chui Titman, and Wei (CTW) (2010))
 - Uncertainty Avoidance i.e., desire to avoid long-run ambiguity (UAI - Nguyen and Truong (2013))
- ▶ \uparrow IDV \rightarrow \uparrow overconfidence and \uparrow momentum (as in CTW)
- ↑ UAI → ↓ focus on ambiguous long-run fundamentals → ↑
 noise trades and ↑ reversals (new)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Momentum, reversal, and culture *IDV* - individualism, *UAI* - uncertainty avoidance

	(1)	(2)	(3)	(4)	(5)	(6)
	REV	REV	REV	МОМ	МОМ	МОМ
IDV	-0.0125		0.0272	0.183		0.168
(t-stat.)	(-0.36)		(0.77)	(4.93)		(4.43)
UAI		0.127	0.131		-0.0745	-0.0486
(t-stat.)		(5.19)	(5.24)		(-2.81)	(-1.79)
Constant	0.00477	-0.00394	-0.00575	0.00344	0.0185	0.00734
(<i>t</i> -stat.)	(2.34)	(-2.39)	(-2.01)	(1.56)	(10.42)	(2.37)
Month × Developed FE	Yes	Yes	Yes	Yes	Yes	Yes
No. of Obs.	9,785	9,785	9,785	9,785	9,785	9,785
Adj-R ²	0.163	0.166	0.166	0.241	0.239	0.241

Return reversal and retail order flow

$$\begin{aligned} r_{i,t} &= \rho_0 + \rho_1 \times r_{i,t-1} + \rho_2 \times |\textit{Retail OIB}|_{i,t-1} \\ &+ \rho_3 \times r_{i,t-1} \times |\textit{Retail OIB}|_{i,t-1} + \epsilon_{i,t}, \end{aligned}$$

We use the method of Boehmer, Jones, Zhang, and Zhang (2021) to isolate retail trades. The sample period is 200611 to 202112.

Variable	(1)	(2)	(3)
<i>r</i> _{<i>i</i>.<i>t</i>-1}	-0.0212	-0.0102	-0.0181
$ Retail OIB _{i,t-1}$	(-2.83)	(-1.33) 0.0003 (0.24)	(-2.61)
$r_{i,t-1} imes Retail OIB _{i,t-1}$		(0.34) -0.0244 (-3.18)	
$\sigma(\textit{Retail OIB})_{i,t-1}$		(3.10)	0.0007 (0.85)
$r_{i,t-1} imes \sigma(\textit{Retail OIB})_{i,t-1}$			(0.85) -0.0138 (-3.60)

Conclusions

- Markets transition from reversals to momentum as return lag increases
- \blacktriangleright Our model \rightarrow differing noise trader horizons, overconfident informed, and uninformed
- Empirical evidence that supports the model
 - Reversals \$\propto around earnings annnouncements
 - \uparrow Momentum $\rightarrow \downarrow$ reversal (across countries and time)
 - ► Reversal profits ↑ in countries with ↑ uncertainty avoidance

Reversal profits ↑ in absolute retail imbalance

Benerjee, Snehal (2011), "Learning from prices and the dispersion in beliefs," *Review of Financial Studies*, vol. 24, 3025–3068.
Behmer, Ekkehart, Charles M. Jones, Xiaoyan Zhang, and Xinran Zhang (2021), "Tracking retail investor activity," *Journal of Finance*, vol. 76, 2249–2305.

Gordia, Tarun, Amit Goyal, and Alessio Saretto (2020),

"Anomalies and false rejections," *Review of Financial Studies*, vol. 33, 2134–2179.

- Interpretent and Paul R. Milgrom (1985), "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," *Journal of Financial Economics*, vol. 14, 71–100.
- Homeed, Allaudeen and G. Mujtaba Mian (2015), "Industries and stock return reversals," *Journal of Financial and Quantitative Analysis*, vol. 50, 89–117.
- Hervey, Campbell, Yan Liu, and Heqing Zhu (2016), "... and the cross-section of expected returns," *Review of Financial Studies*, vol. 29, 5–68.

Holden, Craig and Avanidhar Subrahmanyam (2002), "News events, information acquisition, and serial correlation," *Journal* of *Business*, vol. 75, 1–32.

- Jegadeesh, Narasimhan (1990), "Evidence of predictable behavior
- of security returns," Journal of Finance, vol. 45, 881-898.
- hmann, Bruce (1990), "Fads, martingales, and market
 - efficiency," Quarterly Journal of Economics, vol. 105, 1-28.
- Lio, Jiang, Avanidhar Subrahmanyam, and Sheridan Titman (2021), "Momentum and reversals when overconfident investors underestimate their competition," *Review of Financial Studies*, vol. 34, 351–393.
- Mgel, Stefan (2012), "Evaporating liquidity," Review of Financial Studies, vol. 25, 2005–2039.
- Delean, Terrance (1998), "Volume, volatility, price, and profit when all traders are above average," *Journal of Finance*, vol. 53, 1887–1934.
- 50, Eric C. and Sean Wang (2014), "News-driven return reversals: Liquidity provision ahead of earnings announcements," *Journal of Financial Economics*, vol. 114, 20–35.