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Abstract

Short-Term Reversals and Longer-Term Momentum Around the World:
Theory and Evidence

Stock returns exhibit reversals at short horizons but slowly transition to momentum over

longer horizons. To help understand this pattern, we develop a dynamic model with

short- and long-horizon noise traders, informed investors, and uninformed investors who

underreact to information they do not themselves produce. The model accords with the

transition from reversals to momentum, and yields the following novel predictions: (i)

attenuated reversals following earnings announcements, (ii) a negative relation between

momentum and reversal profits across economies and time, and (iii) larger reversals when

noise trading is more volatile. Empirical analysis using U.S. and international data sup-

ports these predictions.



Finance academics have long focused on tests of stock return predictability. A particu-

larly simple form of such a test is to consider whether past stock returns forecast future

returns. For example, Table 2 of our paper (discussed in detail later) reports the results of

a Fama and MacBeth (1973)-style regression of monthly stock returns on several lags of

these returns, for U.S. as well as international stocks. The table, in essence, extends Table I

in Jegadeesh (1990) to a more recent time-period and to the global context. The literature

has examined two phenomena that are evident in this table. First, the one-month lagged

coefficients are negative and significant, pointing to the familiar monthly reversals (high-

lighted in Jegadeesh (1990)). In addition, the coefficients at lags of three to 12 months are

positive and significant, indicating momentum, which has been extensively studied by

Jegadeesh and Titman (1993), Rouwenhorst (1998), and others. We also observe that the

second lag is insignificant, suggesting a gradual transition from reversals to momentum.

This paper provides a unified model that addresses the above pattern of return pre-

dictability, and yields novel predictions that we test with U.S. and international data.

Specifically, we consider a setting with three rounds of trade. In each round, a signal be-

comes available about a long-term fundamental, such as an annual report. We interpret

the signal in the intermediate round as an earnings announcement, and the other two sig-

nals as analysts’ guidance, or other similar signals produced by market professionals. The

model includes short- and long-horizon noise traders, and two types of active investors.

The first type, the informed, observe signals about fundamentals, and are neoclassical

utility-maximizers as in Grossman and Stiglitz (1980). The second type, the uninformed,

underreact to information they do not themselves produce, due to a form of overconfi-

dence (Odean (1998) and Luo, Subrahmanyam, and Titman (2021)). This underreaction

creates momentum;1 however, reversals also arise because risk averse investors require

a premium to absorb noise trades. The interactions between these phenomena in our

model result in short-term reversals and longer-term momentum, as well as the low pre-

dictability in between.2 A calibration exercise shows that under reasonable conditions,

theoretical magnitudes accord with empirical levels of reversal and momentum profits.

1Chan, Jegadeesh, and Lakonishok (1996) provide evidence that momentum arises from underreaction
to information such as earnings announcements and analysts’ revisions.

2While even longer-term reversals at horizons of two years or more (De Bondt and Thaler (1985),
Zaremba (2016)) are not the focus of this paper, we discuss them in Section 5.
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We proceed to test the model’s new predictions. Our first prediction is that short-

term reversals should attenuate after earnings announcements. Intuitively, because the

market receives more information during earnings announcements than in other periods,

a stronger price underreaction after these announcements weakens the reversals. We find

that this is indeed the case, in both U.S. and international samples. Next, because more

noise trading implies stronger reversals and attenuated momentum, the model predicts

an inverse relation between momentum and reversal profits. We show that these profits

are indeed negatively correlated both across countries, and across time within countries.3

We explore whether cross-country differences in momentum and reversal profits are

related to differences in cultural traits, in ways suggested by our model. Specifically, we

consider the attributes introduced by Hofstede (1991) that have been related to stock re-

turns in earlier literature. These include individualism, considered by Chui, Titman, and

Wei (2010) and uncertainty avoidance, discussed in Nguyen and Truong (2013). Consis-

tent with Chui, Titman, and Wei (2010), individualism is significantly related to momen-

tum profits, but not to reversals. Uncertainty avoidance, however, is related to both. Our

explanation, consistent with Nguyen and Truong (2013), is that cultures exhibiting lesser

avoidance of uncertainty are less conservative, and thus more likely to trade on long-run

fundamentals. In turn, we propose that investors from low uncertainty-avoiding coun-

tries may have more fundamental traders relative to noise traders, which, according to

our model, enhances momentum and attenuates reversals.

Another implication of the model is that increased intensity of noise traders’ order

flows leads to stronger reversals. We proxy for noise traders by retail investors, using the

Boehmer, Jones, Zhang, and Zhang (2021) method to identify retail trades. We measure

the trading intensity of retail investors both by their absolute monthly order imbalance,

and the monthly standard deviation of their order imbalance. We find that reversals are

indeed stronger when retail imbalance is higher in absolute terms or is more volatile.

Our model provides theoretical insights beyond the empirical motivation. For exam-

ple, we show that short-term reversals are amplified by sequential resolution of uncer-

3A competing hypothesis is that the main source of the correlation between momentum and reversals
across countries is variations in arbitrage capital, but this would suggest a positive correlation between mo-
mentum and short-term reversal profits (more arbitrage capital should reduce both forms of predictability),
and this is the opposite to what we find.
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tainty. Thus, if positive noise trades move prices above fundamentals this month, we

expect to see a partial reversal towards fundamentals due to the new information signal

next month. This phenomenon is a consequence of risk aversion and occurs regardless of

underreaction. Thus, without underreaction, noise trades and sequential releases of in-

formation act in the same direction: they both accentuate reversals. The underreaction to

the information signals, however, opposes the reversals. We find that such underreaction

can more than offset reversals at longer horizons, but not at shorter horizons, only if a

large enough proportion of noise traders liquidate their positions quickly.4 It follows that

momentum and short-term reversals occur together in a parameter range where there

are upper and lower bounds on noise trading (which ensure momentum and reversals,

respectively), as well as a lower bound on the proportion of noise traders with short hori-

zons.

We demonstrate that the precision of information signals is a key parameter governing

whether underreaction offsets reversals due to noise trades. To understand the intuition,

note that if a signal is completely uninformative (imprecise), investors do not react to the

signal at all, and noise-trader-induced reversals remain unaffected in this case. In the less

extreme case where precision of the earnings announcement is not too low, underreaction

does mitigate reversals.

Prior research has considered different variations of the forces in our model. In some

models, return persistence occurs if investors underassess the precision of either their

own or others’ information signals, or equivalently, the information content of prices;

see Banerjee (2011), Eyster, Rabin, and Vayanos (2019), Mondria, Vives, and Yang (2022),

and Luo, Subrahmanyam, and Titman (2021). There also are models which illustrate the

general principle that noise traders (informed traders) generate reversals (continuations)

conditional on their trades (for examples, see Glosten and Milgrom (1985), Campbell,

Grossman, and Wang (1993), Holden and Subrahmanyam (2002), Llorente, Michaely, Saar,

and Wang (2002), and Albuquerque and Miao (2014)). Our paper contributes to the above

literature by presenting an integrated model that sheds light on the transition from short-

term reversals to longer-term momentum, and makes additional predictions for which

4While even longer-term reversals at horizons of two years or more (De Bondt and Thaler (1985),
Zaremba (2016)) are not the focus of this paper, we discuss them in Section 5.
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we find empirical support.

There are other approaches to explaining momentum. For instance, Grinblatt and

Han (2005) and Da, Gurun, and Warachka (2014) respectively generate underreaction and

momentum via the disposition effect, and the idea that investors pay less attention to

news that arrives gradually, as opposed to discrete chunks.5 Bordalo, Gennaioli, Ma,

and Shleifer (2020) generate momentum via extrapolative expectations. We conjecture

that our basic results trading off news-induced momentum against noise-trader-induced

reversals would go through under these alternative rationales.6

We also contribute to the empirical literature on short-term reversals.7 Explanations

for such reversals have typically focused on the supply side of liquidity. For example,

Hameed and Mian (2015) show that reversals are stronger after market declines, which is

when capital constraints and risk aversion of liquidity providers are likely to be more rel-

evant. Further, Cheng, Hameed, Subrahmanyam, and Titman (2017) find that short-term

reversals are higher following declines in the number of active institutional investors,

who provide liquidity to retail investors. Our empirical work complements these stud-

ies by emphasizing the demand side of liquidity. We find that reversals are exacerbated

when absolute retail order flows are high and thus provide direct evidence that short-

term reversals are indeed driven by unsophisticated investors, who are more likely to be

noise traders. In addition, we provide new evidence on how and why momentum and

5Barardehi, Bogousslavsky, and Muravyev (2022) indicate that momentum profits primarily emanate
from prices during normal trading periods, as opposite to overnight hours, which is consistent with the
view that momentum arises because the trades of investors underreact to cash flow information (more
likely to be released during the trading day). Huang (2022) shows that the spread between winner and loser
returns in the portfolio formation period is negatively related to momentum profits, which is consistent
with our model if a small spread indicates more underreaction to information within the formation period
(and thus more price movement post-formation).

6Some models explain the empirically observed return predictability from rational perspectives. Cujean
and Hasler (2017) show that in bad times, investors’ opinions polarize due to increasing uncertainty, and
the persistent disagreement causes momentum. Johnson (2002) shows that the momentum effect can arise
in a model with rational investors when expected dividend growth rates vary over time. Though these
papers provide important economic insights, the Sharpe ratios achievable via momentum seem too large to
be explained by rational models (Brennan, Chordia, and Subrahmanyam (1998)).

7Jegadeesh (1990) and Lehmann (1990) consider reversals at monthly and weekly horizons, respectively,
and our study mainly focuses on reversals at the former horizon. There is a separate literature focusing
on even shorter (daily) horizons. Thus, Baltussen, van Bekkum, and Da (2019) and Da, Tang, Tao, and
Yang (2023) attribute daily reversals in stock and commodity indices to noise trading. Nagel (2012) and So
and Wang (2014) find that daily individual stock reversals are higher when market makers are financially
constrained or face greater inventory risks. Cakici and Zaremba (2022) show that part of these reversals can
be explained by salience, i.e., how extreme the return is relative to that for the average stock on a given day.
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reversal profits covary across countries.

Note that the tradeoff between the intensity of noise trading (which generates rever-

sals) and fundamental information (underreaction to which generates momentum) de-

termines whether returns exhibit momentum or reversals in our model. Recent empiri-

cal work supports the role of these forces in the prevalence of momentum and reversals

across countries. For example, Du et al. (2023) and Hameed, Ni, and Tan (2023) find no

unconditional momentum in China and Singapore, respectively, but significant momen-

tum when they exclude low-priced small cap stocks, which have bigger retail ownership

than the other stocks. George, Hwang, and Li (2023) further document that there is mo-

mentum in China excluding February, i.e., the onset of the Chinese New Year, when retail

investors are the most active. Chui, Ranganathan, Rohit, and Veeraraghavan (2023) find

that a 2010 policy change that increased free float in India increased momentum prof-

its. Given that the policy shift was accompanied by a significant increase in institutional

holdings (Jawed and Kotha (2020)), the finding supports our idea that momentum arises

from fundamentals-based institutional trades.8

The rest of this paper is organized as follows. In Section 1, we present the general the-

oretical framework. In Section 2, we use an analytic solution for a special case to obtain

intuition. In Section 3, we use numerical analysis to study the general case. In Section 4,

we empirically test some implications of our model. Section 5 considers possible exten-

sions of our approach. Section 6 concludes. All proofs, unless otherwise stated, appear in

Appendix A.

1 The Setting
We now present the structure of our model which includes utility-maximizing informed

and uninformed investors, as well as noise traders. As we explain below, we assume

that uninformed investors underreact to information due to a form of overconfidence.

Throughout the paper, unless otherwise specified, all individual random variables are

8Lou (2012) and Vayanos and Woolley (2013) also relate serially correlated institutional fund flows to
return momentum. Chui, Subrahmanyam, and Titman (2022) show that Chinese B shares exhibit momen-
tum but not short-term reversals, while A shares demonstrate the opposite pattern. They attribute this to
a higher prevalence of institutions in B shares, using a simple model to motivate their analysis. A caveat
is that the sample of firms that issue both A and B shares is small (less than ninety), thus limiting the
generality of conclusions that can be drawn from their study.
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mutually independent, and normally distributed with zero mean. The variance of a

generic random variable x is denoted by νx.

Assets: There is a risky stock in zero net supply. This security is traded at Dates 0, 1, 2,

and 3, and then liquidated at Date 4. Its liquidation value is given by V = θ. We interpret

θ to be an annual report. There is also a risk-free asset whose price and gross return are

each set to unity.

Investors: A unit mass of active investors, each indexed by i, derive utility from their

final wealth and seek to maximize the following standard exponential utility function:

U(Wi4) = −exp(−AWi4),

where Wi4 is the investor’s final wealth, and A is a positive constant representing the

absolute risk aversion coefficient.

In addition to the demand for shares from active traders, at each date t (t = 1, 2, or 3),

there is a new demand zt from noise traders, which is drawn from a normal distribution

with mean zero and variance νzt . We model noise traders with different horizons as fol-

lows. A fraction of the date t noise demand, (1 − µ)zt, is unwound at Date t + 1; the rest

of this demand, µzt, is unwound at Date t+ 2. µ ∈ [0, 1] is a constant parameter. The date

3 demand, of course, is fully rewound at Date 4. Taken together, the net noise demand

equals z1 (z2 + µz1) (z3 + µz2) at Date 1 (2) (3).9

Information and Beliefs: Date 0 is the starting date and is used to determine an initial

price. At Date 1, a public signal f = θ+ ξ+ ϵ+ ζ is revealed, where ξ (ϵ) (ζ) is drawn from

a normal distribution with mean zero and variance νξ (νϵ) (νζ). At Date 2, a second public

signal F = θ+ξ+ϵ is revealed. At Date 3, a mass λ of “informed” active investors observe

a private signal s = θ + ξ, which is a refined version of the public signals. The remaining

mass 1 − λ of “uninformed” active investors do not observe s. λ ∈ [0, 1] is a constant

parameter. We interpret the Date 2 signal as corresponding to an earnings announcement,

whereas the Dates 1 and 3 signals can be interpreted as analysts’ forecasts or guidance, or

other information produced about the annual report.

9It is possible to model a more general form of the Date t demand as having a component that is reversed
at horizons longer than t + 2, but our analysis indicates that such an assumption does not lead to analytic
solutions. We address this issue numerically in Section 3.4.
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Informed investors are neoclassical utility maximizers with rational expectations, as

in Grossman and Stiglitz (1980). We model underreaction by assuming that uninformed

active investors exhibit a form of overconfidence that makes them skeptical about infor-

mation which they do not themselves produce (Odean (1998), Luo, Subrahmanyam, and

Titman (2021)). Thus, they believe s reveals only part of the payoff θ. Specifically, assum-

ing the payoff θ can be decomposed into two independent components, that is, θ = θ1+θ2,

uninformed investors believe that s = θ1 + ξ, so s reveals only the component θ1. Fur-

ther, from the uninformed’s perspective, f = θ1 + ξ + ϵ + ζ and F = θ1 + ξ + ϵ, so f

and F also reveal only the component θ1. For example, the uninformed may believe the

informed (and managers) are good at assessing competition for the firm’s products, but

may be skeptical about their ability to forecast deeper elements, such as market condi-

tions for downstream customers (Cohen and Frazzini (2008)) or the impact of less-visible

competitors (Baik, Hoberg, Kim, and Oh (2017)). We assume that θ1 (θ2) follows a nor-

mal distribution with mean zero and variance νθ1 = κ−1νθ (νθ2 = (1 − κ−1)νθ), where

1 ≤ κ <∞. The parameter κ then represents the scale of underreaction.

The sequence of public and private signals allows us to obtain analytic solutions, since

the fixed-point setting with asymmetric information (Grossman and Stiglitz (1980)) has to

be solved only at Date 3 when the private signal is revealed. The presence of the privately-

informed makes the modeling more complete, in that we are able to demonstrate that

our results obtain in a specification with rational agents and asymmetric information.

However, the general intuition requires only that some investors underreact to signals

at each date. Thus, the reasoning goes through when the uninformed underassess the

precision of information signals, or fail to condition on market prices (Hong and Stein

(1999), Eyster, Rabin, and Vayanos (2019)), or if the informed receive private signals at

each date. Our exploratory investigation reveals that such models are complex without an

analytic solution even for special cases, though they deliver similar results numerically.10

Also, while our main model has a finite horizon, in Appendix B we show that our model

can be interpreted as applying to an infinite horizon, with a nonzero mean for the final

payoff V and a nontrivial riskfree rate.

10Adding the traditional form of overconfidence, in which the informed investors over-assess their signal
precision (Daniel, Hirshleifer, and Subrahmanyam (1998)), also makes the model less tractable. We briefly
revisit this point in Section 5.2.
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Table 1 describes the timeline of our model. Note that the Date 4 price P4 equals the

final payoff θ. We can solve for the other prices using backward induction. The following

proposition describes the forms of the prices that obtain:

Proposition 1 The prices at Dates 1, 2, and 3 take the following forms:

P3 = γ1ω + γ2F + γ3µz2,

P2 = β1F + γ3µz2 + β2(z2 + µz1)− β3z2,

P1 = α1f + β2µz1 + α2z1,

where ω ≡ s + δz3, and the α’s, β’s, γ’s, and δ are constants. The Date-0 price P0 takes the

normalized value of zero.

The Date-3 price P3 only partially reveals s because of the noise trade z3 (via ω). P3 is also

related to the earnings announcement F because when trading at Date 3, uninformed

investors use it as an additional information source. Note that if µ > 0 the Date-2 noise

demand z2 does not unwind completely at Date 3; but the unwound portion µz2 still

influences P3 because of the limited risk-bearing capacity of the market.

Considering the expression for the Date-2 price, P2, we see that the first term β1F

depends on the expectation of the final payoff θ, conditional on F . The second term

γ3µz2 is a speculative component that arises because active investors anticipate that if

µ > 0, then the noise demand z2 will not unwind completely at the next date and will still

influence P3. The third term β2(z2 + µz1) is due to the current net noise demand z2 + µz1;

when this noise demand is positive (negative), it pushes P2 up (down). The last term,

−β3z2, represents the influence of the anticipated effect of z2 on the next period’s price

(P3), which reflects the fact that z2 is only partially unwound at Date 3.

The Date-1 price P1 takes a similar form as price P2. The first term α1f depends mainly

on the expectation of the final payoff θ, conditional on the public signal f . The price P1

also includes a term related to investors’ anticipation that the unwound noise demand

z1 still affects price P2 at the next date (i.e., β2µz1), and a term (α2z1) that combines the

direct effect of the net noise demand as well as the indirect effect coming from investors’

anticipation of the unwinding of the noise trades.
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Our analysis focuses on two measures of return predictability. The first is a short-term

predictability measure, which is return predictability from past returns in adjacent peri-

ods. The second is a measure of long-term predictability, which is the predictability over

time spans that are greater than one period.11 More explicitly, the short-term predictabil-

ity measure is expressed as the average of the three contiguous covariances

S =

∑3
t=1Cov(Pt − Pt−1, Pt+1 − Pt)

3
, (1)

and the long-term predictability measure is expressed as

L = Cov(P2 − P0, P4 − P2). (2)

2 An Analytical Solution for a Special Case
In the most general case, the predictability measures S and L cannot be analyzed in closed

form. However, we now provide analytical results for a special case where we let λ = 0

and assume that uninformed investors directly learn the signal s. This represents the limit

of the case where λ → 0 so that the mass of uninformed relative to informed investors is

large. For simplicity, we also fix the Date-3 noise trade z3 ≡ 0, so that the Date-3 price

fully reveals informed investors’ private signal s. We also assume that the noise trades

at Dates 1 and 2 have the same scale (i.e., νz1 = νz2 = νz > 0). Further, we assume that

0 ≤ µ ≤ 1; in other words, that new noise trader positions are reversed over at most the

next two periods.

We use the simplified model above to consider in closed-form the interaction between

momentum and short-term reversals, as well as how return predictability is influenced by

public announcements and how serially dependent noise trades influence price patterns.

We calibrate the general model to match the empirical magnitudes of short-term reversals

and longer-term momentum; Section 3 provides details of this exercise, and performs

additional comparative statics.

Let κs = νθ1 + νξ, κF = κs + νϵ, and κf = κF + νζ , and let the subscript ℓ indicate that

the expectation is based on uninformed beliefs, as described in the previous section. The

following lemma presents the prices in analytic form.
11We use return autodependence to measure reversals and momentum. Luo, Subrahmanyam, and Tit-

man (2021) show that the autocovariance represents the average profit of a cross-sectional portfolio strategy
(see also Lehmann (1990)).
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Lemma 1 In the special case, the prices are as follows:

P3 = Eℓ(θ|s) + c3µz2, (3)

P2 = Eℓ(θ|F ) + c3µz2 + b2(z2 + µz1), (4)

P1 = Eℓ(θ|f) + b2µz1 + az1, (5)

where

c3 = A(νθ − ν2θ1κ
−1
s ), b2 = (ν2θ1/κs)(1− κsκ

−1
F ), a ≡ a1 − a2, with

a1 ≡ A
ν2θ1
κF

(
1− κF

κf

)
+ A

(b2 + c3µ)
2

ν−1
z + Ab2 + Ac3µ2

, and a2 ≡ A
(b2 + c3µ) b2

ν−1
z + Ab2 + Ac3µ2

µ.

P0 takes the normalized value of zero.

Noting that a ≡ a1 − a2, the noise demand z1 that arises at Date 1 affects P1 through a

direct demand effect (i.e., a1z1) and an indirect effect −a2z1 due to the anticipated date 2

noise trade of µz1.12 Of course, at Date 2, the unwound µz1 influences P2. At Date 3, z1 is

unwound completely and no longer affects the price. The noise demand z2 has a similar

effect on the price dynamics.

2.1 Momentum and reversals

Next, we develop results that simultaneously allow for short-term reversals and longer-

term momentum. Specifically, denote Eℓ(θ|s) ≡ νθ1κ
−1
s s and κθ|s ≡ νθ − ν2θ1κ

−1
s as respec-

tively the mean and variance of θ conditional on s. Further, let κEℓ(θ|s)|F ≡ (ν2θ1/κs)(1 −

κsκ
−1
F ) be the variance of Eℓ(θ|s) conditional on F . We are able to prove the following

proposition:

Proposition 2 Let νz ∈ [U1, U2], where U1 and U2 are two positive numbers defined in Ap-

pendix A. We then have the following:

(i) If µ is sufficiently small, then long-run predictability L > 0. Further, L decreases in µ.

(ii) The parameter representing short-term predictability S < 0, and increases in µ if and only if

2κθ|s < κEℓ(θ|s)|F .

12Indeed, observe that a2 = 0 when µ = 0.
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(iii) As the magnitude of noise trading (νz) increases, for sufficiently small µ, momentum atten-

uates (L decreases) and short-term reversals strengthen (S becomes more negative).

Thus, in a finite range for the scale of noise trades, we obtain both short-term reversals

(which obtain for high νz) as well as longer term momentum (which requires low νz).

Within this range, increases in noise trading exacerbate short-run reversals and mitigate

the momentum effect. If the noise trades unwind slowly (i.e., µ > 0), then at Date 2 the

demand effect of the unwound µz1 causes a further deviation of P2 from the fundamental;

the expectation of the unwound µz2’s effect on P3 causes a further deviation of P2 from

the fundamental. Both effects can decrease L = Cov(P2 − P0, P4 − P2).

It is intuitive that S becomes more negative as noise trades increase in scale, i.e., as νz

increases. The effect of µ on S, on the other hand, is more subtle. It may seem that al-

lowing a greater proportion of noise traders to have long horizons (increasing µ) should

attenuate short-horizon reversals (i.e., make S less negative). This does not follow from

our model because investors speculate on the effects of noise trades on future prices. As

information gets revealed in each period the risk premium required by active investors

to absorb noise trades decreases, which contributes to short-horizon reversals even for

high µ.13 The extent of these risk premium reductions depends on the precision of the

information signals. The proposition above shows that if κEℓ(θ|s)|F is sufficiently high (i.e.,

if uninformed investors considerably underassess the content of the earnings announce-

ment), then the effect of information revelation on the risk premium at the intermediate

date is sufficiently weak that increasing µ attenuates short-term reversals, and vice versa.

In the remainder of this section, we assume that νz is in the range indicated by Propo-

sition 2. We next show that the magnitude of the momentum effect is stronger if one

skips a period between the portfolio holding and formation periods. This is because this

skipping sidesteps the effect of the reversals. To show this, we define a parameter L∗

L∗ ≡ Cov(P2 − P0, P4 − P3), (6)

which represents the covariance where the return in the period between Dates 2 and 3 is

skipped. We obtain the following result:
13For example, prices contemporaneously decrease when noise traders sell, but if the next period’s signal

is infinitely precise, prices reverse to their full information value regardless of whether noise traders want
to hold stock beyond the date of the signal’s release.
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Proposition 3 Skipping a period enhances the momentum effect, i.e., L∗ > L; further, L∗ de-

creases in νz.

The above proposition is consistent with the finding that momentum profits are empiri-

cally enhanced by skipping one month between portfolio formation and holding; see, e.g.,

Korajczyk and Sadka (2004). To understand the result, we conduct a simple comparison

between Equations (2) and (6), and obtain

L∗ = L − Cov(P2 − P0, P3 − P2);

thus, skipping effectively removes Cov(P2 − P0, P3 − P2) from L. As part of the proof of

Proposition 3, given in Appendix A, we show that because of the reversals induced by

the noise demands z1 and z2, Cov(P2 − P0, P3 − P2) < 0. By removing the effect of this

covariance, skipping strengthens the momentum effect.

2.2 Transition from short-term reversals to momentum

Under reasonable conditions, short-term reversals can gradually transition to momentum

as one conditions on progressively longer lags of returns to predict future returns. To

formally show this, we define two parameters:

S(2) =
Cov(P1 − P0, P3 − P2) + Cov(P2 − P1, P4 − P3)

2
,

S(3) = Cov(P1 − P0, P4 − P3).

Compared to the short-term return predictability parameter S, S(2) represents lagging the

return twice, and S(3) represents lagging thrice. We obtain the following result:

Proposition 4 (i) S(3) > 0.

(ii) If µ = 0, then S(2) > 0 and does not depend on the scale of noise trades νz.

(iii) If µ > 0, then S(2) decreases in νz. Specifically, as νz increases from zero, S(2) is first positive

and eventually turns negative.

Lagging the return by more than one period sidesteps the effect of the reversals induced

by short-term noise traders. In this case, underreaction leads to price continuation; there-

fore, S(3) > 0, and provided that µ = 0, S(2) > 0. If µ is high so noise trades have a longer
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impact on returns, then S(2) may turn negative as the scale of noise trades, νz, increases.

Since S < 0, and S(3) > 0, Part (iii) of Proposition 4 implies that there exists a range of

νz such that the level of return predictability at the second lag (S(2)) is bracketed by the

levels at the first (S) and third (S(3)) lags. It is evident that µ is crucial for this bracketing.

Note that the serial correlation in noise trades induced by a positive µ cannot generate

unconditional momentum, as the effect of noise demands must eventually be reversed.

This serial correlation, however, prolongs the horizon of the reversal, and thus helps ex-

plain how momentum can be offset by reversals during a transition period from reversals

to momentum. Hence, noise traders, their horizons, and underreaction together help

explain short-term reversals, longer-term momentum, and attenuated predictability in

between.

2.3 Return predictability around earnings announcements

Denote CovE ≡ Cov(P2 − P1, P3 − P2) to be the return autocovariance of the contiguous

price changes around the earnings announcement. Further, let Cov2E ≡ Cov(P2−P1, P4−

P3) denote the twice-lagged return autocovariance surrounding the earnings announce-

ment. We obtain the analytical result below:

Proposition 5 Provided that µ is sufficiently small, we have the following:

(i) CovE > S if νζ/κf >
√
3νϵ/κs. Further, CovE decreases in νz.

(ii) Cov2E > 0.

Since S < 0, part (i) of the above proposition indicates that under the stated condition,

short-term reversals attenuate around earnings announcements. The intuition is as fol-

lows. On the one hand, at Date 2, the price underreacts to earnings, and this underreac-

tion is partially corrected at Date 3 when a more precise signal s is learned. This tends to

raise CovE . On the other hand, the noise demand z2 causes the price P2 to deviate from

the fundamental, and this deviation reverts across Dates 2 and 3. This tends to exert a

downward pressure on CovE . Overall, CovE exceeds the short-term reversal parameter S

under the condition in Part (i), which holds if the earnings announcement is sufficiently

precise relative to the Date 3 signal (i.e., νζ is high relative to νϵ). This is because in this
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case, the continuation induced by prices’ underreaction to earnings more than counteracts

the reversals. Further, as previously shown (see the discussion following Proposition 4),

lagging the return twice sidesteps the effect of the reversals induced by short-term noise

traders, and this causes Cov2E to be positive.

We observe here that when noise trades have a long-lasting impact on returns (i.e.,

noise traders hold their positions for more than two periods), lagging by two periods

may not offset the effect of the reversals induced by noise traders. This case represents a

variation from Proposition 5. While analytical solutions are not possible for this scenario,

we present a numerical analysis in Section 3.4.

3 Numerical Analysis
This section performs numerical analysis for more general versions of our model. In this

setting, all three noise demands, z1, z2, and z3, are random, and informed investors have

a non-trivial mass 0 < λ < 1. To start, in Sections 3.1 we assume that noise trades at

each date have a common variance νz > 0, and calibrate the model to generate short-

term reversals and longer-term momentum that roughly match the magnitudes observed

in the U.S. data. Sections 3.2 and 3.3 then show that our central implications obtain in

the neighborhood of the parameter set used for the calibration. Section 3.4 extends our

model to a case where noise traders hold their positions to more than two periods, and to

a scenario where the scale of noise trades can vary across time.

3.1 Short-term reversals and longer-term momentum: Calibrations

Figure 1 plots the short-term predictability parameter S as a function of the parameters

representing the scale of the noise trades, νz, and the portion of noise trades that are long-

term, µ. The other parameter values are λ = 0.5, A = 2, νθ = 1, νξ = νϵ = νζ = 0.5,

and κ = 2.14 It is notable that S < 0 if νz (µ) is sufficiently high (low). Further, a greater

scale of noise trades (i.e., higher νz) exacerbates short-term reversals (i.e., S becomes more

negative). If noise trades unwind slowly (i.e., a higher µ), S tends to increase, though
14Our value for risk aversion, A, is same as that used in Leland (1992) and Holden and Subrahmanyam

(2002). The value of unity for νθ is a normalization. The noisiness of the information signals, ξ, ϵ, and ζ, has
a similar scale as that of the final payoff θ. We choose a neutral value for the mass of informed investors, λ,
that is, 0.5 (the results are not particularly sensitive to the chosen value). Our value for the parameter κ is
consistent with the range used by Odean (1998).
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modestly.

Under plausible parameter values, our model generates short-term reversal magni-

tudes that are consistent with the empirical literature. To see this, we first note that the

opposite of the short-term predictability parameter, −S, can be interpreted as the average

profit from trading on short-term reversals: that is, at each Date t (t = {1, 2, 3}), selling

(buying) |Pt − Pt−1| shares of the stock if Pt − Pt−1 is positive (negative), and holding this

position until Date t+ 1. The average long or short position (in shares) of this strategy at

Dates 1, 2, and 3, denoted by |YS |, is given by:

|YS | =
1

3

3∑
t=1

E(Pt − Pt−1|Pt − Pt−1 > 0) =

√
2

9π

3∑
t=1

std(Pt − Pt−1),

where the last equality obtains because Pt − Pt−1 are all normally distributed with mean

zero. Thus, the per-share payoff from trading against the short-term reversals is approx-

imately −S/|YS |. We interpret each period (from one date to the next date) of our setting

as representing 1.5 months (so that we can interpret the long-term autocovariance param-

eter as three-month momentum). Noting that we have normalized the payoff variance νθ

to unity in our base parameter choices, we convert the per-share payoff to annual percent-

age units using an annual return standard deviation of 25% (Karolyi (2001)).15 We plot the

annualized return, −S/|YS |, in Figure 2. Depending on νz and µ, the average return from

trading on short-term reversals can be negative or positive, and can be even higher than

10%. If, for example, µ = 0.2 and νz = 0.15, then it equals 9.4%. This is consistent with the

number of 0.8% per month on the monthly reversal factor from Ken French’s website.16

Next, Figure 3 plots the long-term predictability parameter L as a function of νz and

µ. We see that momentum arises (i.e., L > 0) when νz and µ are low. It is also notable that

noise trades can mitigate or even reverse the momentum effect (i.e., L decreases and even

becomes negative) when noise traders have a bigger scale (i.e., νz is high) and less of them

unwind their positions quickly (i.e., µ is high); this result confirms the previous analysis

in Proposition 2. As suggested by Chen and Hong (2002), the long-term predictability

15Since θ spans six months, the equivalent return standard deviation corresponding to νθ scales the an-
nual value of 25% by (1/2)0.5. This is then applied to the per share (1.5-month) payoff. The resulting
number is then scaled up by eight to obtain annualized profits, so the scale factor applied to −S/|YS | is
25%× (1/2)0.5 × 8.

16See http://mba.tuck.dartmouth.edu/pages/Faculty/ken.french/data library.html#Research.
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parameter L can be interpreted as the average profit of a momentum strategy: that is, at

Date 2, buying (selling) |P2 − P0| shares of the stock if P2 − P0 is positive (negative), and

holding this position until Date 4. The average long or short position (in shares) of this

strategy, denoted by |YL|, is given by:

|YL| = E(P2 − P0|P2 − P0 > 0) = std(P2 − P0)
√
2/π,

where the last equality obtains because P2 − P0 is normally distributed with mean zero.

Thus, the per-share payoff from the momentum strategy is approximately L/|YL|. As in

Figure 2, we convert the momentum payoff to annual percentage units using an annual

return standard deviation of 25% (Karolyi (2001)).17 We plot the annualized momentum

payoff, L/|YL|, in Figure 4.18 As we see, the average momentum return can range from

being negative or zero to close to 10%. If, for example, µ = 0.2 and νz = 0.15, then

it equals 3.3%. Given that our theoretical strategy does not go long-short in extreme

deciles, but uses all stocks, this compares favorably with the 10% average (annual) return

on international decile-based momentum in Rouwenhorst (1998) (Table III), and others.

An implication of Part (iii) of Proposition 2, as well as Figures 1 and 3 is that that for

economies where νz is high, we would expect reversals, and for those with the opposite

characteristic, we would expect momentum. Mediated by νz, we would expect momen-

tum and reversal profits to be inversely related across countries. We test this implication

in Section 4.

Effect of the underreaction parameter (κ): Figure 5 plots the momentum parameter L

and the short term reversal parameter S as functions of κ, which represents the scale of

underreaction. As we can see, as κ increases, momentum profits increase but reversal

profits decline. The intuition is as follows. With an increase in κ, there is more underre-

action, so momentum increases. However, an increase in κ means an underassessment of

risk, which implies greater liquidity provision to noise traders and thus reduced reversals.

Effect of the precision of the public signal (νϵ): Figure 6 plots the momentum parameter

L and the short term reversal parameter S as a function of νϵ, the parameter which repre-

sents the noisiness in the fundamental signal. As we can see, as νϵ increases, momentum
17Note that in this case, the holding period is equivalent to three months. Thus, the scale factor of Foot-

note 15 is 25%× (1/2)0.5 × 4.
18The calibration of momentum follows similar exercises in other work such as Andrei and Cujean (2017).

16



profits decrease but reversal profits increase. The intuition is as follows. As νϵ increases

without bound, the fundamental signal becomes so noisy that active investors pay little

attention to it. Without useful fundamental information, the underreaction to such in-

formation plays a negligible role in price formation, hence momentum is attenuated. On

the other hand, with a greater νϵ, there is more uncertainty about the asset’s value, so the

premium for bearing noise trader risk increases, thus increasing reversal profits.

Sections 3.2 and 3.3 to follow revisit some analytical results in Section 2 within the

more general version of the model. Unless otherwise stated, the parameter values in

these subsections are the same as those chosen for the calibration above.

3.2 Transition from reversals to momentum

We now confirm numerically in the general model that short-term reversals can be atten-

uated and gradually transition to momentum as one conditions on progressively longer

lags of returns to predict future returns. Panel A of Figure 7 plots S , S(2) (which represents

lagging returns twice), and S(3) (which represents lagging returns thrice) as functions of

the scale of noise trades, νz; we let µ = 0 so that once a noise trade arises, all of it unwinds

on the next date. Given a sufficiently high νz, S < 0 because the effect of the reversals

of the noise trades offsets the underreaction to information signals. Both S(2) and S(3)

are positive because lagging by more than one period sidesteps the effect of the reversals

induced by short-term noise traders.

In Panel B of Figure 7, we let µ = 0.2 so that it takes two dates for a noise trade to

unwind completely. It is notable that in this case, noise trades also cause S(2) to decline.

Specially, as νz increases, S(2) is first positive and then turns indistinguishable from zero.

This is because the effect of the continuing reversals of the noise trades offsets the under-

reaction to information signals. S(3) = Cov(P1 − P0, P4 − P3) remains positive because

the effect of the noise traders does not last at the longer lag. Our analysis here confirms

the discussion following Proposition 4 – as we can see, the degree of return predictabil-

ity at the second lag is bracketed by the short-term reversals parameter and the return

predictability beyond the second lag (i.e., S < S(2) < S(3)).
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3.3 Return predictability around earnings announcements

Next, we examine returns around the earnings announcement at Date 2 in the general

model. Figure 8 plots Cov(P2 − P1, P3 − P2) ≡ CovE as a function of the scale of noise

trades, νz, and the portion of noise trades that are long-term, µ. Consistent with the

previous analysis (see Proposition 5 and the ensuing discussion), CovE decreases in νz; it

is negative unless νz is sufficiently low. The effect of noise trades is attenuated around the

earnings announcement, but it still dominates that of underreaction.

Figure 9 simultaneously considers S , CovE , and longer-lag return predictability as

measured by Cov(P2 − P1, P4 − P3) ≡ Cov2E . In Panel A, we set µ = 0 so that all noise

traders have short horizons. We see that CovE is greater than S provided that νz is suf-

ficiently high. This result is consistent with the previous analysis (see Proposition 5 and

the ensuing discussion). Cov2E is positive regardless of the scale of νz; this is because lag-

ging by more than one period sidesteps the effect of the reversals induced by short-term

noise traders. Panel B of the figure considers the case of µ = 0.2 (slow unwinding of

noise trades). In this case, as noted in the discussion following Proposition 5, Cov2E turns

negative for large νz. This is because the effect of the continuing noise trade reversals

more than offsets the underreaction to information signals. In either of Panels A and B,

however, it can be seen that for sufficiently large νz, CovE is higher than S and lower than

Cov2E (as demonstrated in Proposition 5), so that reversals are attenuated around earn-

ings announcements, and this attenuation becomes stronger as we move to predicting a

return further away from the earnings date.

3.4 Other specifications of noise trading

In our setting to this point, each cohort of noise traders holds the initial position for at

most two periods. We now modify this aspect of the model, and leave all other features

unchanged. Specifically, a fraction µ1 of the Date 1 noise traders now reverse their posi-

tions at Date 2, a fraction µ2 at Date 3, and the remainder hold their positions till Date 4.

Such a setting does not permit analytical solutions, but is readily solved numerically. The

algebraic details are omitted for brevity.

In Figure 10 we plot the long-term predictability parameter L as a function of the new

parameter µ2. We set µ1 = 0.5, νz = 0.15 and the other parameter values are the same
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as in earlier figures. We see from the figure that if µ2 is high, we still obtain momentum.

However, as it drops lower, L turns negative. This is because in this case, the reversal

induced by longer-term noise trades more than counteracts the underreaction.

Next, in Figure 11, we plot the return predictability measures S, S(2), and S(3) as a

function of µ2. These measures represent return predictability from lagging returns once,

twice, and thrice, respectively, as in Section 2.2. We see that S(2) remains bracketed by S

and S(3) throughout, supporting Proposition 4 and Figure 7. However S(3) increases in µ2.

Thus, the lower the tendency of noise traders to hold their positions very long-term (the

greater is µ2), the stronger is the (positive) long-lag return predictability.

It is also of interest to explore the consequence of relaxing the assumption that all

noise trades have a common variance νz. For illustrative purposes, we numerically solve

a model variant where νz1 = νz2 and the variance of the Date 3 noise trade, νz3, is a free

parameter.19 Again, the algebraic details are omitted for brevity. Figure 12 plots the re-

versal and momentum parameters, as well as momentum with a period skipped between

the holding and formation periods, all as functions of the Date-3 noise trade, νz3 . The

other parameter values are the same as in earlier figures. The central result is that higher

νz3 stimulates reversals and attenuates momentum. In our empirical work, we interpret

νz3 as the noise trade in the holding period month (in which profits to momentum and re-

versal strategies are measured). Under this interpretation, based on Figure 12, we expect

momentum and reversal profits to vary inversely with each other in the time series.

4 Empirical Motivation and Analysis
In this section, we first discuss the extant evidence in the context of our model. We then

develop and test novel empirical implications of our model.

4.1 Existing Evidence

As we mentioned in the introduction, the existing evidence of short-term reversals, longer-

term momentum, and no predictability in between (Jegadeesh (1990)) is consistent with

the implications of our model (Proposition 4). There also is recent international evidence

that accords with our implications. For instance, though there is no evidence of momen-

19In unreported simulations, similar results obtain when νz1 and νz2 are allowed to vary independently.
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tum in Chinese A shares (Docherty and Hurst (2018)), George, Hwang, and Li (2023))

find significant momentum excluding February, which they argue is special because of

the behavior of retail investors around the Chinese New Year. Specifically, they find very

strong return reversals in February, which is similar to the finding of January reversals

in the U.S.20 Given the observed February spike in losing stocks’ turnover, they attribute

the February reversals to retail investors’ appetite for these losing stocks around the New

Year. In a study of Singaporean stocks, Hameed, Ni, and Tan (2023) find no unconditional

momentum, but significant momentum in high-priced, large cap stocks. They show that

retail investor prefer low-priced, small cap stocks and institutional ownership is relatively

high in high-priced, large cap stocks. These findings indicate that because retail investors

are likely to be noise traders, the effect of their trades camouflage momentum in low-

priced, small cap stocks. Medhat and Schmeling (2022) show that the largest U.S. stocks

with the highest share turnover show evidence of short-horizon (monthly) momentum,

instead of reversals. Since institutions are more likely to be active in larger stocks (Ferreira

and Matos (2008)), this finding is consistent with retail investors being more active in the

relatively smaller stocks, and the underreaction of informed institutions more than off-

setting noise traders at monthly horizons within the larger stocks. These papers support

our result in Proposition 2 that the noise trades of retail investors exacerbate reversals,

whereas underreaction to fundamental information promotes momentum.

4.2 New Implications

Our analysis further suggests three previously-untested empirical implications. We pro-

vide these below, and reference the proposition and/or figure that suggest each:21

1. (Proposition 5 and Figure 8) Short-term reversals are attenuated in months that fol-

low those with earnings announcements.

2. Momentum and reversal profits are inversely related across countries (Figures 1&3;

Part (iii) of Proposition 2) and over time (Figure 12).22

20See George and Hwang (2004). China’s tax-year is the same as the calendar year in the U.S., so the
February seasonality is not associated with year-end tax effects.

21While Proposition 5 mentioned in the first implication below is derived for small µ, it is readily verified
that it holds for the parameter values in Figure 8, which encompass the calibration in Section 3.1.

22This implication is based on the assumption that the principal source of variation across time and
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3. (Part (iii) of Proposition 2) Greater noise trader imbalances in absolute terms, or

greater variability in such imbalances, imply stronger short-term reversals. To test

this implication, we use retail trade imbalances as a proxy for noise trades.23

We describe our data in the next subsection, and then provide empirical evidence consis-

tent with these implications.

4.3 Data

The U.S. sample is comprised of all common stocks on CRSP with share codes 10 or 11, ex-

cluding stocks with prices below $1 or market capitalization below the 10% NYSE break-

point at the end of month t − 1, where t is the current month. We exclude small and low

priced stocks to circumvent any market microstructure issues, and to ensure our results

are not driven by microcaps (Fama and French (2008)). The sample period is January 1931

to December 2020.

The international sample is comprised of stocks with primary listing in one of the 22

countries that make up the MSCI Developed (ex-US) index and the 27 countries that make

up the MSCI Emerging markets index.24 Datastream is the data source for this sample. We

restrict the sample to stocks that the indicator ISINID identifies as the primary security,

and the primary exchange code (EXDSCD) is one of the stock exchanges in the countries

within the sample. We exclude depository receipts (DRs), REITS, and preferred stocks.

countries is the volume (νz) of noise trades. There may also be variations in the amount of arbitrage capital.
This would imply a positive relation between momentum and reversals (when arbitrage capital is high,
momentum and reversals would both be weak). This can be viewed as a competing hypothesis. We also ac-
knowledge that the level of overconfidence (skepticism) can vary across countries. As we will see in Section
4.6, however, we do control for individualism (the Chui, Titman, and Wei (2010) proxy for overconfidence).

23We use both the absolute retail imbalance during a month, and the monthly standard deviation (s.d.)
of this imbalance, to measure the scale of noise trades. This is because under normality, the s.d. of the noise
trade is proportional to its absolute value. Strictly speaking, the econometrician observes the unconditional
expectation of the absolute noise trade (alternatively, the expected s.d.). The s.d.’s of noise trading during
our four periods are the square roots of νz , νz(1+µ2), νz[1+(1−µ)2+µ2], and νz[1+(1−µ)2]. The average
of these quantities increases in νz , but its derivative with respect to µ has ambiguous sign. If µ is fairly
stable, the bulk of the empirical variation in the absolute value and s.d. obtains from νz , and this parameter
tends to make S more negative (from Proposition 2 and Figure 1).

24The developed market countries are Australia, Austria, Belgium, Canada, Denmark, Finland, France,
Germany, Hong Kong, Ireland, Israel, Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Singa-
pore, Spain, Sweden, Switzerland, and the United Kingdom. The emerging market countries are Argentina,
Brazil, Chile, China, Colombia, Czech Republic, Egypt, Greece, Hungary, India, Indonesia, Korea, Kuwait,
Malaysia, Mexico, Pakistan, Peru, Philippines, Poland, Qatar, Russia, Saudi Arabia, South Africa, Taiwan,
Thailand, Turkey, and the United Arab Emirates.
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We compute monthly returns from Datastream, and use the data cleaning procedures

suggested by Griffin, Kelly, and Nardari (2010), Hou, Karolyi, and Kho (2011), Ince and

Porter (2006), Jacobs and Müller (2020), and Lee (2011).25 We apply data filters in the

following order. First, if the return in either of two consecutive months is greater than

300% and the cumulative return across those two months is less than 50% then we set

returns in both months as missing. The rationale is that reversal of large returns implies

a data error. Second, we discard all monthly returns greater than 200%. Also, if 90% or

more of stocks in a country have zero returns during any month then we set the returns

for all stocks in that country to missing values for that period. Finally, we winsorize the

remaining returns in each country at the 0.1% and 99.9% levels.

Since our tests (and our model) involve simply relating monthly current returns to past

returns, we do not adjust them for market or factor returns, nor do we include controls

for other cross-sectional predictors. However, we have tried such adjustments based on

the market factor and the global version of the five Fama and French (2015) factors, and

including profitability (Novy-Marx (2013)) as well as asset growth (Cooper, Gulen, and

Schill (2008)) as cross-sectional predictors; the results are unchanged.

4.4 Transition from reversals to momentum: An out-of-sample check

Jegadeesh (1990) (Table I) regresses returns on past lags in a manner similar to the follow-

ing equation:

ri,t = ρ0 +
τ∑
j=1

(ρj × ri,t−j) + ϵi,t, (7)

where ri,t is the return on stock i in month t, and the explanatory variables are monthly

returns from t−1 through t−τ . He shows that the first lag is negative and significant, the

second lag is insignificant, while the remaining lags are positive and mostly significant.

This transition accords with our model (viz. Proposition 4 and Figure 7). However, the

data are for the U.S. and end in 1982. To investigate robustness, we first replicate the

analysis (with τ = 12)26 over the updated 1931-2020 period, and then extend the analysis

to an international context.
25We thank Amit Goyal for help with the data cleaning process.
26Jegadeesh (1990) also uses the 24th and 36th lag but these are not consistently significant in our sample

and are omitted for brevity. While he adjusts returns for their long-run time-series means, he finds that this
has little impact on the coefficients; hence we desist from doing this adjustment.
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Panel A of Table 2 presents Fama-MacBeth regression estimates and t-statistics for U.S.

stocks. We find that the estimate of ρ1 is −0.045 with a t-statistic of −13.54, while ρ2 is in-

distinguishable from zero. The slope coefficients ρ3 through ρ12 are significantly positive.

The sum of ρ2 through ρ12 captures the cumulative momentum effect. Table 2 tabulates

this sum, which is 0.1157 for the full sample period, and significantly exceeds zero. Fur-

ther, we also present the χ2-statistic for the null hypothesis that all 12 slope coefficients

are jointly equal to zero; this is rejected at any conventional level of significance. The

table also presents the regression estimates in three 30-year subperiods. The patterns in

the slope coefficients during these subperiods are similar to those during the full sample

period, although there is a diminution of the predictability in recent years.

Panel B of Table 2 presents a global out-of-sample test for the U.S. results in Panel A.

Specifically, we report the Fama-MacBeth estimates of Regression (7) for the international

sample over the January 1991 to December 2020 period. These results are strikingly sim-

ilar to those for the U.S. For example, ρ1 is significantly negative and it is the largest

coefficient in magnitude. The coefficients ρ2 through ρ12 are all positive, although ρ2 and

ρ4 are not significantly different from zero. As with the U.S. data, the evidence that ρ1 is

significantly negative and ρ3 is significantly positive, but that ρ2 is insignificant, supports

the return dynamics implied by our model. Note also that the sum of ρ2 through ρ12,

which measures the cumulative momentum effect, is significantly positive. The absolute

value of the monthly reversal coefficient and the sum of the momentum coefficients for

non-U.S. stocks in Panel B are higher than those in the corresponding subperiod for U.S.

stocks within Panel A. Further, the χ2-statistic for Panel B is 96.3 and readily rejects the

null of no predictability.

In sum, the out-of-sample findings confirm that the gradual transition from short-term

reversals to momentum (which accords with Section 2.2 and 3.2 of our model) is robust.27

Specifically, the finding that ρ2 is indistinguishable from zero is consistent with Figure 7

27Ehsani and Linnainmaa (2022) show that factor momentum subsumes individual stock momentum
(see also Kelly, Moskowitz, and Pruitt (2021) and Arnott, Kalesnik, and Linnainmaa (2023)). Falck, Rej, and
Thesmar (2020) (p. 3) indicate that “factor momentum is “spanned” by stock momentum and factor ex-
posure, except at one-month time scale.” Further, the evidence from Ehsani and Linnainmaa (2022) is that
factor momentum is strongest at the one-month horizon while we have one-month return reversals for in-
dividual stocks (Jegadeesh (1990)). As such, factor and stock momentum appear to haver non-overlapping
elements, and we focus on stock-level momentum.
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of Section 3.2 and supports the notion that the momentum effect due to underreaction just

offsets reversals at the two-month horizon.28 The fact that the sum of the slope coefficients

ρ3 through ρ12 is significantly positive accords with the idea that the effect of noise traders

is offset by underreaction at horizons longer than two months.

4.5 Return predictability around earnings announcements

Our first untested implication in Section 4.1 indicates that reversals should be lower in the

month following an earnings announcement. We test this implication separately for U.S.

and non-U.S. stocks. We examine return dynamics following earnings announcements

using the following regression:

ri,t = ρ0+
12∑
j=1

(ρj × ri,t−j)+b×EAD Dummyi,t−1+ϕ×EAD Dummyi,t−1×ri,t−1+ϵi,t, (8)

where ri,t is the return on stock i in month t and EAD Dummyi,t−1 is an indicator variable

that equals 1 if stock i announces earnings in month t−1. The coefficient ϕ captures the ef-

fect of the earnings announcement on short-term reversals. Since we expect a negative ρ1

(from Table 2), a positive ϕ would suggest an attenuation of reversals following earnings

announcements, and vice versa.

To estimate Equation (8), we obtain quarterly earnings announcement dates for U.S.

stocks from Compustat and for international stocks from Worldscope. Because the avail-

ability of these dates in Compustat and Worldscope is more limited than returns data

on CRSP or Datastream, we add the condition that a stock have at least one earnings

announcement in the previous 12 months to be included in the sample for a particular

month. Due to the requirement that earnings dates be available, the U.S. sample spans

January 1972 to December 2020, while the international sample spans 1992 to 2020.

We fit Regression (8) using the Fama-Macbeth procedure. Panel A of Table 3 presents

the estimates for U.S. stocks. The behavior of the lagged return coefficients is similar

to that in Table 2. The coefficient ϕ, however, is significantly positive (with a t-statistic

that exceeds seven), implying that monthly reversals attenuate when the previous month

contains an earnings announcement. The magnitude of ϕ at 0.025 compares favorably

28Goyal and Wahal (2015) show that ρ2 is negative and significant during 1927–1947 and 1969–1989,
which is consistent with long-lasting noise trading during these subperiods.
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to the size of the monthly reversal coefficient, which is −0.037. The coefficient estimate

of ϕ suggests that reversals in the month following an earnings announcement are 68%

(0.025/0.037) lower than their unconditional value. The sum ρ1 + ϕ at −0.012 shows that

over the one-month horizon, return reversals due to noise traders more than offset the

short-horizon continuation in returns around the earnings announcement. This coeffi-

cient behavior qualitatively matches our model (viz. Proposition 5 and Figure 8).

Panel B of Table 3 presents the results for international stocks. The sample period

for international stocks is from June 1992 to December 2020, which is a shorter period

than our U.S. sample that starts in 1972. Again, the coefficient on the one-month lag is

negative at −0.030 and strongly significant, while ϕ is positive and significant at 0.021

(t-statistic=3.99), showing that short-term reversals attenuate around earnings announce-

ments. The magnitude of the attenuation is about 70% (0.021/0.030). The net effect of the

first lag (ρ1 +ϕ) is −0.010, and the corresponding magnitude is comparable to that for the

U.S.29 Thus, international data yield the same qualitative result that reversals attenuate

by more than two-thirds in months that follow earnings announcements. This evidence

is strong support for the first implication in Section 4.1.

4.6 The relation between momentum and reversal profits

We now test our second implication in Section 4.1, that momentum and short-term re-

versal profits should be inversely related, across countries and in the time-series for each

country. For these test, we form decile-based hedge portfolios based on past one-month

and past two-to-twelve month returns within each country, and measure the returns on

these portfolios the subsequent month. The reversal portfolio goes long the lowest return

decile and vice versa, whereas the opposite is true for the momentum portfolio. Since we

perform a cross-country analysis, we do not separate the U.S. from other countries in this

subsection. We require countries to have 100 firms as of the previous December to ensure

the reliability of portfolio returns.

29Table 4 uses the maximal time series available for earnings data in the U.S. (Panel A) and internationally
(Panel B). In untabulated analyses, however, we replicate Panel A for the same period as Panel B (1992-
2020), and find qualitatively similar results. Specifically, ρ1 is negative and significant (although, consistent
with Table 2, it is smaller in magnitude relative to that in Panel A), while ϕ is positive and significant.
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4.6.1 Momentum and reversals across countries and time

We first explore the cross-country relation between momentum and short-term reversals.

At the outset, we note that in untabulated findings, short-term reversal and momentum

strategies yield positive average returns in 70% and 90% of the countries, respectively, and

the bivariate cross-country correlation between these returns is a statistically significant

−0.313. This latter finding supports a negative relation between momentum and reversals

across countries. To confirm this relation, Table 4 runs a pooled cross-sectional, time-series

regression of short-term reversal profits on momentum profits:

REVj,t = α0 + α1MOMj,t + uj,t, (9)

where REVj,t and MOMj,t are short-term reversal and momentum profits in country j

during month t. We present two versions of Regression (9), with and without month

fixed effects. As can be seen, in each case, the slope is strongly negative, with an absolute

t-statistic exceeding six. In terms of magnitude, from Table 4, a one standard deviation

increase in momentum implies a 0.19 standard deviation decrease in reversals, which is

substantial.30 We acknowledge that the choice of dependent and independent variable is

arbitrary in Table 4; however, reversing the choice leads to an identical conclusion that

momentum and short-term reversal profits are negatively related across countries. We

build on this finding by linking these profits to an exogenous mediating variable within

Table 6 to follow.

We now examine whether momentum and reversal profits are negatively related in the

time-series. We would expect such a relation from Figure 12, as discussed in Section 3.4.

In Table 5, we present the time-series correlations between contemporaneous momentum

and short-term reversal profits, that is, Corr(REVj,t,MOMj,t), for each country j in our

sample. As we can see, this correlation is negative for 90% of the countries. Further,

the correlation exceeds 10% in absolute terms for each of these negative cases. Finally,

the average correlation is highly significant at −0.216 (with a median of −0.251). This

evidence also is consistent with our second implication that momentum and short-term

reversal profits should vary inversely with each other.

30This conclusion is based on the coefficient of −0.166 from the regression which includes month fixed
effects. The standard deviation of reversal profits is 89% of that of momentum profits.
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4.6.2 Cross-country differences that explain return predictability

This section explores cross-country differences that might generate the observed correla-

tions in momentum and reversal profits. Our model suggests that these differences may

come from institutional and cultural differences across countries that influence the be-

havior of either noise traders or active informed traders. It would be natural to directly

consider cross-country differences in noise trading and institutional ownership, however,

we are not aware of country-by-country data on retail trading (or even holdings) and in-

stitutional ownership data tend to be very noisy (Ferreira and Matos (2008)). Moreover, in

an international setting it is difficult to classify large blockholdings and insider ownership

(Becht and Röell (1999)) within the context of our model.

Cultural differences may provide a more promising path for identifying relevant cross-

country differences. For example, the finance literature has explored two dimensions of

culture, identified by Hofstede (2001) that appear to influence stock return patterns. Thus,

Chui, Titman, and Wei (2010) propose that the individualism trait of Hofstede (2001) leads

to excessive overconfidence, which is then linked to momentum. In addition, Nguyen

and Truong (2013) consider the Hofstede (2001) uncertainty avoidance trait and find that

the information content of stock prices is higher in countries with low uncertainty avoid-

ance, supporting the view that there may be more focus on fundamentals in such coun-

tries.31 Since momentum arises from trading on long-term fundamentals while reversals

are caused by informationless noise trades within our setting, we expect low uncertainty

avoidance to lead to more momentum and weaker reversals.

Details of the data collection for the country-specific cultural traits are described in

Chui, Titman, and Wei (2010) and Hofstede (2001).32 Summary statistics for the attributes

of individualism (IDV ) and uncertainty avoidance (UAI) appear in Panel A of Table 6.

The means and medians for each attributes are relatively close to each other, indicat-

ing little skewness. The correlation between individualism and uncertainty avoidance is

moderately negative at −0.167.
31As Nguyen and Truong (2013) indicate, uncertainty avoidance refers to “the extent that people of a

culture feel threatened by uncertain or unknown situations and the extent that people try to minimize such
uncertainty” (Hofstede (1984)), and this might reduce a focus on uncertain long-run fundamentals and
increase noise trading.

32These attributes are discussed and available at https://tinyurl.com/333bxra2. The data are available
for 66 countries.
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We first conduct an exploratory exercise relating UAI and IDV to momentum and

short-term reversals. Specifically, Panel B of Table 6 presents average momentum and

short-term reversal profits across countries (in percentages per month) split by median

values of UAI and IDV . Momentum profits are higher (1.65%) in countries with above-

median IDV than those with below-median IDV (0.961%), which confirms Chui, Tit-

man, and Wei (2010). We also see, however, that short-term reversal profits are three

times higher (0.609%) in countries with above-median UAI than in those with below-

median UAI (0.233%). Momentum and reversal profits are higher in low UAI and high

IDV countries, respectively, relative to countries with the opposite characteristics, but the

magnitude of these differences is less dramatic.

To investigate the patterns in Panel B via regression, Panel C of Table 6 presents the

results of the following pooled cross-sectional, time-series regressions that relate reversals

and momentum to IDV and UAI :33

PREDj,t = α0 + α1CULTUREj + uj,t, (10)

where PREDj,t is the short-term reversal or momentum profit in country j during month

t, and CULTUREj is a matrix that consists of either one or two cultural attributes (IDV

or UAI). The results from estimating Regression (10) again confirm the result of Chui,

Titman, and Wei (2010) that momentum is positively related to IDV . However, IDV

is not related to reversals. Further, UAI is significantly related to both reversals and

momentum; it implies stronger short-term reversals and weaker momentum. The effect

of UAI on reversals has a t-statistic that exceeds five in absolute terms.34 When both IDV

and UAI are included as explanatory variables in the same regression, UAI continues to

be significant at the 1% level for reversals, and at the 10% level for momentum. In terms

of magnitudes, considering the bivariate regressions, a one standard deviation increase in

uncertainty avoidance implies a 30 basis point increase in short-term reversals, and an 18

33We include month x developed market status fixed effects, but the results are not sensitive to this
inclusion.

34We also control for other measures of investor sophistication which might be inversely related to the
level of noise trading, such as per capita GDP (which might be related to education in general, and financial
education specifically), and a direct measure of financial literacy (obtained from Klapper, Lusardi, and
Van Oudheusden (2015)). We also include a measure of volatility, which is calculated as a rolling standard
deviation of monthly returns over the immediately preceding 24 months. These variables do not have an
impact on the role of UAI .
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basis point decrease in momentum. The results support the view that lower uncertainty

avoidance implies stronger momentum and weaker short-term reversals.

4.7 Retail order imbalance and short-term reversals

We use the trades of retail investors to test the third and last implication in Section 4.1,

that reversals are stronger when noise trader imbalances are more variable or higher in

absolute terms. In doing so, we do not mean to imply that all retail trades are noise trades;

just that such trades are more likely to emanate from individual investors (see Barber, Lee,

Liu, and Odean (2008)). We estimate the net trade imbalance of retail investors using the

method suggested by Boehmer, Jones, Zhang, and Zhang (2021) to isolate retail trades.35

Specifically, in month t, we compute

Net Retail Buyi,t =
Retail Buyi,t −Retail Selli,t

Retail Buyi,t +Retail Selli,t
,

where Retail Buyi,t and Retail Selli,t are the number of shares of stock i bought and sold

by small investors in month t, as reported in TAQ. The sample consists of all common

stocks with available data for the TAQ variables BuyV ol Retail and SellV ol Retail on a

daily basis, which are the imputed levels of retail buy and sell volume, respectively. These

variables are each summed to the monthly level for each stock. The monthly versions of

these variables then form the Retail Buy and Retail Sell variables in the computation of

Net Retail Buy above.

We subtract the cross-sectional mean of Net Retail Buyi,t, and then divide by the

cross-sectional standard deviation to compute a scaled measure of retail order imbalance,

which we denote as Retail OIBi,t, and we use its absolute value |Retail OIB|i,t as a

proxy for the magnitude of noise trading. We then perform the following Fama-MacBeth

regression:

ri,t = ρ0 + ρ1 × ri,t−1 + ρ2 × |Retail OIB|i,t−1 + ρ3 × ri,t−1 × |Retail OIB|i,t−1 + ϵi,t, (11)

where we interact lagged returns with the absolute retail imbalance. Our sample period

and cross-section is limited by the availability of retail imbalances to November 2006 –

35In a recent paper Barber et al. (2021) indicates that the Boehmer, Jones, Zhang, and Zhang (2021) proce-
dure faces challenges when bid-ask spreads are high. Any errors in classification, however, should attenu-
ate the measured coefficients.
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December 2021, and to U.S. stocks.36

Column (1) of Table 7 includes only the one-month lagged return, while column (2) in-

cludes all the variables in Regression (11). As we see, unconditionally, monthly reversals

are significant with a t-statistic of −2.83, even for our smaller and more recent sample pe-

riod over which retail trades are available. In column (2), however, we see the following

pattern. First, the coefficient of the lagged return more than halves in magnitude when

the absolute retail imbalance terms are included, and becomes insignificant. We also see

that the coefficient on the interaction term, ρ3, is strongly significant and negative with a

t-statistic of −3.18. This indicates that absolute retail imbalances do exacerbate monthly

reversals, which accords with our model.37 Both the baseline coefficient on lagged return

and the interaction coefficient of lagged return with retail imbalance have a similar (abso-

lute) magnitude of about 0.02, and the full-sample standard deviation of |Retail OIB| is

0.67. This means that a one-standard-deviation increase in retail imbalance has an impact

on monthly reversals that is about two-thirds of the baseline effect.

In our theoretical model, the absolute level of noise trades is proportional to the stan-

dard deviation of noise trades because we assume normality. This correspondence does

not have to be exact empirically, because of possible departures from normality and im-

perfect trade signing. As a robustness check, therefore, in column (3) of Table 7 we replace

|Retail OIB|i,t−1 with σ(Retail OIB)i,t−1, the monthly standard deviation of daily order

flows from retail investors (which is also cross-sectionally standardized). As can be seen,

the interaction of σ(Retail OIB)i,t−1 with lagged returns continues to retain a negative

sign and attains strong significance. Overall, the results confirm the role of retail demand

(which is more likely to represent noise trades) as a key source of reversals.

36This recent U.S. period, which includes the global financial crisis, does not yield predictability beyond
the first return lag (Daniel and Moskowitz (2016), McLean and Pontiff (2016), and Bhattacharya, Li, and
Sonaer (2017)), nor any evidence that retail trades help explain return lags beyond the first, hence we refrain
from including longer return lags in Equation (11).

37Barber, Huang, Odean, and Schwarz (2022) show that net (signed) order flows of retail investors at the
discount brokerage RobinHood are accompanied by price movements in the opposite direction at 20-day
horizons; this is consistent with our results at monthly horizons.
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5 Discussion
We now discuss the consequences of relaxing the model’s assumptions, and propose that

alternative approaches might lead to additional insights.

5.1 Liquidity Provision Delays

In our model, all active investors are potential liquidity providers. Specifically, a shock

to noise trades influences the positions of all active investors. In reality, many active in-

vestors have relatively long horizons and are unable to allocate their attention to all stocks

at all times. A potential extension of our analysis would allow some active investors to

be present in the market every period (as in our setting), but some to be inattentive to

opportunities for liquidity provision. In this setting the investors who are continuously

present would provide the initial liquidity; however, as other active investors enter the

market, the inventory premium would decline. We believe that such an extension would

explain the attenuation in the one-month reversal in recent years, corresponding with the

participation of quant traders, with much lower costs of attention, and faster responses to

order flows of noise trades.38

5.2 Longer-Term Reversals

Our model does not focus on long-term reversals over horizons of three years or more

(De Bondt and Thaler (1985)). However, other models do address this phenomenon. For

example, in Daniel, Hirshleifer, and Subrahmanyam (1998) long-term reversals arise be-

cause investors are overconfident about the precision of their own information signals

and thus overreact to such signals. Such reversals also arise in Hong and Stein (1999) and

Bordalo, Gennaioli, Ma, and Shleifer (2020) because trend-chasers cause overreaction of

prices to past news. Assuming that people overestimate the precision of their own in-

formation, or naı̈vely extrapolate future returns from past long-term returns could help

explain short-term reversals, intermediate-term momentum, and longer-term reversals,

but would result in an exceedingly complex and perhaps less intuitive model.

38See Nagel (2012) and Cheng, Hameed, Subrahmanyam, and Titman (2017) for evidence that reversals
decline with rises in liquidity provision and institutional capital available for arbitrage.
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5.3 Acquisition of Noise Information

Our model raises the possibility that it may be profitable to acquire noise-related sig-

nals, particularly when such trades are positively autocorrelated (as in meme-stock re-

lated episodes). Trading in advance of anticipated noise trades would lead to additional

rents for informed traders, and a model that endogenizes acquisition of signals about

autocorrelated noise trades would be interesting. While we believe the thrust of our re-

versal/momentum results would remain unchanged in an extension, how information

about dynamic noise trading affects the incentives to acquire and trade on fundamental

information would form an interesting investigation.39

6 Conclusion
Returns gradually transition from reversals at short lags, to weak or no predictability at

intermediate lags, and to momentum at longer lags. We develop an integrated framework

that explains these features of equity markets and we test several new implications of the

model. Our setting includes informed traders, “liquidity” or “noise” traders, as well as

uninformed investors who underreact to information they do not themselves produce.

In our model, underreaction to long-term fundamentals gradually offsets noise-trade-

induced-reversals as the return lag length increases, provided noise trading is not too

extreme, and if a sufficiently large proportion of noise traders liquidate positions quickly.

We test new predictions of our model. First, our analysis implies that reversals should

attenuate following earnings announcements, because underreaction to earnings should

counteract noise-trader-induced reversals. We find strong support for this attenuation.

We also predict a negative relation between momentum and short-term reversal prof-

its across countries and within each country across time. The data confirm this novel

implication. We next propose that cross-country variations in momentum and reversal

profits may in part be generated by cultural differences (Hofstede (2001)). We provide

evidence that such variations may be due to differences in the trait of uncertainty avoid-

ance. Specifically, countries with lower uncertainty avoidance have weaker reversals and

stronger momentum. Our explanation, consistent with Nguyen and Truong (2013), is that

39Farboodi and Veldkamp (2020) and Yang and Zhu (2020) present models where some investors have
information about noise trades, but such trades are not positively autocorrelated.
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less uncertainty avoidance might imply more focus on uncertain long-term fundamentals

and less noise trading, and, as suggested by our model, imply strengthened momentum

and attenuated short-term reversals. Finally, our model implies that short-term reversals

are stronger when noise traders’ order flows are either more variable or higher in absolute

terms. Using estimated retail order flows, we find support for this implication as well.

Our analysis suggests a future direction for empirical work that relates to how investor

clienteles and information flows might influence return patterns across markets. In our

model, momentum is caused by traders’ reaction to new information. This observation

indicates that the frequency of information releases, as well as whether noise traders or

active investors dominate the market, should influence the prevalence of reversals ver-

sus momentum, as well as the horizons over which these phenomena occur. Along these

lines, Medhat and Schmeling (2022) show that large stocks with high turnover show signs

of momentum in the U.S., suggesting the dominance of active institutions and higher fre-

quency of information releases in the large stock/high turnover segment. Going beyond

this finding, identifying international proxies for noise trading and markets’ information

environments are likely to be challenging exercises, but warrant future research.

33



References
Albuquerque, Rui, and Jianjun Miao, 2014, Advance information and asset prices, Journal

of Economic Theory 149, 236–275.

Andrei, Daniel, and Julien Cujean, 2017, Information percolation, momentum and rever-

sal, Journal of Financial Economics 123, 617–645.

Arnott, Robert D., Vitali Kalesnik, and Juhani T. Linnainmaa, 2023, Factor momentum,

Review of Financial Studies 36, 3034–3070.

Baik, Bok, Gerard Hoberg, Jungbae Kim, and Peter Seung Hwan Oh, 2017, Shocks to

product networks and post-earnings announcement drift, Working paper, available at

SSRN 2803775.

Baltussen, Guido, Sjoerd van Bekkum, and Zhi Da, 2019, Indexing and stock market serial

dependence around the world, Journal of Financial Economics 132, 26–48.

Banerjee, Snehal, 2011, Learning from prices and the dispersion in beliefs, Review of Fi-

nancial Studies 24, 3025–3068.

Barardehi, Yashar H., Vincent Bogousslavsky, and Dmitriy Muravyev, 2022, What drives

momentum and reversal? Evidence from day and night signals, Working paper, available

at SSRN 4069509.

Barber, Brad, Yi-Tsung Lee, Yu-Jane Liu, and Terrance Odean, 2008, Just how much do

individual investors lose by trading?, Review of Financial Studies 22, 609–632.

Barber, Brad M., Xing Huang, Philippe Jorion, Terrance Odean, and Christopher Schwarz,

2021, A (sub) penny for your thoughts: Tracking retail investor activity in TAQ, Working

paper, available at SSRN 4202874.

Barber, Brad M., Xing Huang, Terrance Odean, and Christopher Schwarz, 2022, Attention

induced trading and returns: Evidence from Robinhood users, Journal of Finance 77,

3141–3190.
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Figure 1: Short-term reversals
This graph plots the short-term return predictability parameter S as a function of the parameters
representing the scale of noise trades, νz , and the portion of noise trades that are long-term, µ. The
other parameter values are λ = 0.5, A = 2, νθ = 1, νξ = νϵ = νζ = 0.5, and κ = 2.
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Figure 2: Trading on short-term reversals: Annual return
This graph plots the calibrated annualized returns of trading against short-term reversals,
−S/|YS |, as a function of the parameters representing the scale of noise trades, νz , and the portion
of noise trades that are long-term, µ. The other parameter values are λ = 0.5, A = 2, νθ = 1,
νξ = νϵ = νζ = 0.5, and κ = 2.
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Figure 3: Momentum
This graph plots the long-term return predictability parameter L as a function of the parameters
representing the scale of noise trades, νz , and the portion of noise trades that are long-term, µ. The
other parameter values are λ = 0.5, A = 2, νθ = 1, νξ = νϵ = νζ = 0.5, and κ = 2.
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Figure 4: Annualized momentum return
This graph plots the calibrated annualized returns of the momentum parameter, L/|YL|, as a func-
tion of the parameter representing the scale of noise trades, νz , and the portion of noise trades that
are long-term, µ. The other parameter values are λ = 0.5, A = 2, νθ = 1, νξ = νϵ = νζ = 0.5, and
κ = 2.
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Figure 5: Momentum and reversals as functions of the scale of underreaction κ
This graph plots the long- and short-term return predictability parameters (L and S, respectively)
as functions of the parameter representing the scale of underreaction κ. The other parameter
values are λ = 0.5, µ = 0.2, A = 2, νθ = 1, νξ = νϵ = νζ = 0.5, and νz = 0.15.
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Figure 6: Momentum and reversals versus the noisiness of the fundamental signal νϵ
This graph plots the long- and short-term return predictability parameters (L and S, respectively)
as functions of the parameter representing the noisiness of the public signal F , νϵ. The other
parameter values are λ = 0.5, µ = 0.2, A = 2, νθ = 1, νξ = νζ = 0.5, κ = 2, and νz = 0.15.
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Figure 7: Return predictability conditional on longer return lags
This graph plots S (the parameter representing short-term return predictability), S(2) (which rep-
resents lagging the return twice), and S(3) (which represents lagging the return thrice) as functions
of the scale of noise trades, νz . We let µ = 0 in Panel A, and µ = 0.2 in Panel B. The other parameter
values are λ = 0.5, A = 2, νθ = 1, νξ = νϵ = νζ = 0.5, and κ = 2.
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Figure 8: Return predictability conditional on the earnings announcement date
This graph plots CovE ≡ Cov(P2 − P1, P3 − P2) as a function of the parameters representing the
scale of noise trades, νz , and the portion of noise trades that are long-term, µ. The other parameter
values are λ = 0.5, A = 2, νθ = 1, νξ = νϵ = νζ = 0.5, and κ = 2.
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Figure 9: Longer-lag return predictability conditional on the earnings date
This graph plots the short-term return predictability parameter S, CovE ≡ Cov(P2 − P1, P3 − P2),
and Cov2E ≡ Cov(P2 − P1, P4 − P3) as functions of the parameter representing the scale of noise
trades, νz . We let µ = 0 in Panel A, and µ = 0.2 in Panel B. The other parameter values are λ = 0.5,
A = 2, νθ = 1, νξ = νϵ = νζ = 0.5, and κ = 2.
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Figure 10: Momentum when noise traders have very long horizons
This graph plots the long-term return predictability parameter L as a function of µ2, the proportion
of Date 1 noise traders that reverse their positions at Date 3. We let µ1 = 0.5, and νz = 0.15. The
other parameter values are λ = 0.5, A = 2, νθ = 1, νξ = νϵ = νζ = 0.5, and κ = 2.
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Figure 11: Long-lag return predictability when noise traders have very long horizons
This graph plots the short-term return predictability parameter S, S(2) (which represents lagging
the return twice), and S(3) (which represents lagging the return thrice) as functions of µ2, the
proportion of Date 1 noise traders that reverse their positions at Date 3. We let µ1 = 0.5, and
νz = 0.15. The other parameter values are λ = 0.5, A = 2, νθ = 1, νξ = νϵ = νζ = 0.5, and κ = 2.

0 0.1 0.2 0.3 0.4 0.5

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

50



Figure 12: Reversals and momentum as functions of the Date 3 noise trade νz3
This graph plots the short- and long-term return predictability parameters (S and L, respectively),
and the long-term return predictability parameter with a period skipped between past and future
returns (L∗), as functions of the parameter representing the scale of Date-3 noise trade, νz3 . The
other parameter values are λ = 0.5, µ = 0.2, A = 2, νθ = 1, νξ = νϵ = νζ = 0.5, κ = 2, and
νz1 = νz2 = 0.15.
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Table 1: The timeline of the model

Date 0 Date 1 Date 2 Date 3 Date 4
(prior date) (terminal date)

Information:
No information
signals

A public signal
f = θ+ ξ+ ϵ+ ζ
is released.

A public signal
(earnings) F =
θ + ξ + ϵ is re-
leased.

Informed in-
vestors observe
a private sig-
nal s = θ + ξ;
uninformed
investors do
not.

The stock pays
a liquidation
value V = θ.

Beliefs:
Uninformed in-
vestors believe
that f reveals
only part of
the payoff (i.e.,
f = θ1+ξ+ϵ+ζ).

Uninformed in-
vestors believe
that F reveals
only part of
the payoff (i.e.,
F = θ1 + ξ + ϵ).

Uninformed in-
vestors believe
that s reveals
only part of
the payoff (i.e.,
s = θ1 + ξ).

Informed in-
vestors assess
the informa-
tiveness of f
properly.

Informed in-
vestors assess
the informa-
tiveness of F
properly.

Informed in-
vestors assess
the informa-
tiveness of s
properly.

Noise trades:
There is a noise
demand z1.

(1 − µ)z1 of the
Date-1 noise
demand is un-
wound;

The remaining
µz1 of the Date-
1 noise demand
is unwound;

there is a new
noise demand
z2.

(1 − µ)z2 of the
Date-2 noise
demand is un-
wound;

there is a new
noise demand
z3.

Prices:
P0 is formed
(and is non-
stochastic).

P1 is formed. P2 is formed. P3 is formed. P4 is formed
(and equals θ).
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Table 2: Monthly regression coefficients on lagged returns

This table presents the results of the following regression:

ri,t = ρ0 +
12∑
j=1

(ρj × ri,t−j) + ϵi,t,

where ri,t is return on stock i in month t. The table reports the regression coefficients and the corresponding t-statistics
(in parentheses). The coefficients and the standard errors used to compute the t-statistics are estimated using the Fama-
MacBeth method. The χ2(12)-statistic in the last column is computed under the null hypothesis that the slope coefficients
ρ1 through ρ12 are jointly equal to zero. The 10%, 5%, and 1% critical values for a χ2(12)-statistic are 18.5, 21.0, and 26.2,
respectively. Panel A presents the results for U.S. stocks. The U.S. sample is comprised of common stocks on CRSP with
share codes 10 or 11, excluding stocks with market capitalization below the 10% NYSE breakpoint and also stocks priced
less than $1 at the end of month t − 1. The sample period is January 1931 to December 2020. Panel B presents the results
for international stocks from the countries listed in Footnote 24. We obtain data on international stock returns (computed
in USD) from Datastream. The sample excludes all stocks priced less than $1 (USD) at the end of month t − 1. The sample
period is from January 1991 to December 2020.

Period ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 ρ10 ρ11 ρ12
∑12

i=2 ρi χ2(12)
Panel A: U.S. stocks

193101 to 202012 Estimate −0.0450 0.0022 0.0181 0.0094 0.0099 0.0142 0.0087 0.0015 0.0119 0.0082 0.0135 0.0181 0.1157 354.6
(t-stat.) (−13.54) (0.76) (6.28) (3.43) (3.42) (4.66) (3.14) (0.58) (5.06) (3.57) (5.68) (7.64) (7.01)

193101 to 196012 Estimate −0.0748 0.0012 0.0264 0.0096 0.0074 0.0189 0.0102 −0.0042 0.0065 0.0098 0.0173 0.0265 0.1297 181.1
(t-stat.) (−10.66) (0.19) (4.08) (1.56) (1.14) (2.57) (1.63) (−0.72) (1.23) (1.96) (3.20) (4.94) (3.43)

196101 to 199012 Estimate −0.0480 0.0027 0.0197 0.0175 0.0131 0.0175 0.0118 0.0079 0.0191 0.0112 0.0156 0.0267 0.1630 272.5
(t-stat.) (−9.72) (0.63) (4.78) (4.30) (3.07) (4.60) (3.03) (2.10) (5.37) (3.25) (4.62) (7.96) (7.01)

199101 to 202012 Estimate −0.0121 0.0027 0.0082 0.0012 0.0092 0.0061 0.0042 0.0008 0.0100 0.0035 0.0075 0.0011 0.0544 32.52
(t-stat.) (−2.69) (0.61) (2.07) (0.33) (2.42) (1.60) (1.08) (0.22) (3.37) (1.09) (2.39) (0.35) (2.51)

Panel B: Non-U.S. stocks

199101 to 202012 Estimate −0.0158 0.0016 0.0102 0.0045 0.0050 0.0090 0.0052 0.0067 0.0124 0.0048 0.0075 0.0091 0.0761 96.28
(t-stat.) (−3.62) (0.45) (3.16) (1.50) (1.62) (2.83) (1.73) (2.16) (4.56) (1.82) (2.89) (3.42) (4.86)
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Table 3: Lagged return interacted with earnings announcement dummies
This table presents the estimates for the following regression:

ri,t = ρ0 +
12∑
j=1

(ρj × ri,t−j) + b× EAD Dummyi,t−1 + ϕ× EAD Dummyi,t−1 × ri,t−1 + ϵi,t,

where ri,t is the return on stock i in month t and EAD Dummyi,t−1 is an indicator variable that equals 1 if stock i announces
earnings in month t− 1. The table reports the regression coefficients and the corresponding t-statistics (in parentheses). The
coefficients and the standard errors used to compute the t-statistics are estimated using the Fama-MacBeth method. The
U.S. sample is comprised of common stocks on CRSP with share codes 10 or 11, excluding stocks with market capitalization
below the 10% NYSE breakpoint stocks that are in the smallest NYSE decile and also stocks priced less than $1 at the end of
month t−1. We obtain earnings announcement dates from Compustat. The sample excludes stocks that do not have at least
one earnings announcement date on Compustat over the previous 12 months. The sample period is from January 1972 to
December 2020. The international sample is comprised of stocks from the countries listed in Footnote 24. We obtain data on
international stock returns (computed in USD) from Datastream and earnings announcement dates from Worldscope. The
sample excludes all stocks that do not have at least one earnings announcement date on Worldscope over the previous 12
months. The sample period is from June 1992 to December 2020.

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 ρ10 ρ11 ρ12 b ϕ

Panel A: U.S. stocks (197201 to 202012)

Estimate −0.0367 0.0036 0.0126 0.006 0.0081 0.0095 0.0055 0.006 0.0148 0.0083 0.0103 0.0113 −0.0004 0.0246
(t-stat.) (−8.59) (1.11) (4.06) (2.10) (2.75) (3.21) (2.03) (2.17) (5.84) (3.24) (4.13) (4.37) (−0.85) (7.12)

Panel B: Non-U.S. stocks (199206 to 202012)

Estimate −0.0304 0.0027 0.0127 0.0069 0.0062 0.0115 0.0045 0.0088 0.0087 0.0034 0.0074 0.0093 0.0014 0.0208
(t-stat.) (−6.14) (0.59) (3.53) (1.74) (1.84) (2.96) (1.18) (2.53) (2.53) (1.06) (2.14) (2.54) (1.19) (3.99)
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Table 4: Reversal and momentum profits across countries

This table presents the results of the following pooled cross-sectional regression:

REVj,t = α0 + α1MOMj,t + uj,t,

where REVj,t and MOMj,t are short-term reversal and momentum profits in country j
during month t. For calculating REV and MOM we form decile-based hedge portfolios
based on past one-month and past two-to-12 month returns, and measure the average
returns on these portfolios the subsequent month. The table reports the regression coef-
ficients and the corresponding t-statistics (in parentheses). The sample period is January
1991 to December 2020. The sample excludes all stocks priced less than $1 (USD) at the
end of month t − 1. We require countries to have 100 firms as of previous December
(otherwise, portfolio returns are unreliable).

(1) (2)
REV REV

MOM −0.166 −0.194
(t-stat.) (−6.10) (−6.35)
Constant 0.00715 0.00847
(t-stat.) (19.72) (6.24)
Month FE Yes No
No. of Obs. 10,325 11,045
Adj-R2 0.170 0.049
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Table 5: Time-series correlations between reversal and momentum profits
This table presents the time-series correlation between monthly momentum
(MOM ) and short-term reversal (REV ) profits within each country. For calcu-
lating REV and MOM we form decile-based hedge portfolios based on past one-
month and past two-to-12 month returns, and measure the average returns on
these portfolios the subsequent month. The sample period is January 1991 to De-
cember 2020. The sample excludes all stocks priced less than $1 (USD) at the end
of month t − 1. We require countries to have 100 firms as of previous December
(otherwise, portfolio returns are unreliable).

Name of country Corr(MOM ,REV )
Austria −0.1269
Australia −0.2388
Belgium −0.3278
Brazil 0.0303
Canada −0.2709
Switzerland −0.4019
Chile 0.1112
China −0.3402
Czech Republic −0.0095
Germany −0.4117
Denmark −0.2765
Egypt −0.3995
Spain −0.2534
Finland −0.2510
France −0.3735
United Kingdom −0.4199
Greece −0.1618
Hong Kong −0.1243
Israel −0.2514
India −0.1759
Italy −0.4167
Japan −0.3728
Korea −0.2006
Malaysia −0.3616
Netherlands −0.3112
Norway −0.3273
New Zealand 0.0504
Pakistan −0.1040
Poland −0.2684
Portugal −0.1728
Russia 0.1792
Saudi Arabia −0.0378
Sweden −0.2497
Singapore −0.4072
Thailand −0.1384
Turkey −0.1068
Taiwan −0.1242
South Africa −0.1064
United States −0.2662
Average −0.2158
Median −0.2510
% negative 89.7%
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Table 6: Reversal, momentum, and culture

Panel A presents summary statistics and correlations for the cultural attributes of indi-
vidualism (IDV ) and uncertainty avoidance (UAI) described in Hofstede (2001). Details
of the data collection procedure appear in Chui, Titman, and Wei (2010). Panel B presents
average momentum (MOM ) and short-term reversal (REV ) profits (in percentages per
month) across countries split by the median values of UAI and IDV (with medians as-
signed to the below-median group). For calculating the reversal profit (REV ) we form
decile-based hedge portfolios based on past one-month return, and measure the return
on these portfolios the subsequent month. For the momentum profit (MOM ) we replace
the past month’s return with the past two-to-twelve months’ return. Columns (1) - (3) and
(5) to (7) in Panel C of the table present the results of the following pooled cross-sectional
regression:

PREDj,t = α0 + α1CULTUREj + uj,t,

where PREDj,t is the short-term reversal (momentum) profit in country j during month
t. CULTUREj is one of two cultural attributes based on Hofstede (2011). IDV is indi-
vidualism and UAI is uncertainty avoidance. The table reports the regression coefficients
and the corresponding t-statistics (in parentheses). All slopes are multiplied by 103. The
sample period is January 1991 to December 2020. The sample excludes all stocks priced
less than $1 (USD) at the end of month t− 1. We require countries to have 100 firms as of
the previous December.

Panel A: Summary statistics
IDV UAI

Mean 51.24 63.73
Median 54.00 68.00
Std. Dev. 23.71 24.10
Corr(IDV , UAI) −0.167

Panel B: MOM and REV split by
UAI and IDV medians

MOM REV

UAI
Above median 1.118 0.609
Below median 1.615 0.233

IDV
Above median 1.650 0.506
Below median 0.961 0.245

[Table continues on next page]
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Table 6, continued

Panel C: Regressions
(1) (2) (3) (4) (5) (6)
REV REV REV MOM MOM MOM

IDV −0.0125 0.0272 0.183 0.168
(t-stat.) (−0.36) (0.77) (4.93) (4.43)
UAI 0.127 0.131 −0.0745 −0.0486
(t-stat.) (5.19) (5.24) (−2.81) (−1.79)
Constant 0.00477 −0.00394 −0.00575 0.00344 0.0185 0.00734
(t-stat.) (2.34) (−2.39) (−2.01) (1.56) (10.42) (2.37)
Month x Developed FE Yes Yes Yes Yes Yes Yes
No. of Obs. 9,785 9,785 9,785 9,785 9,785 9,785
Adj-R2 0.163 0.166 0.166 0.241 0.239 0.241
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Table 7: Return reversal and retail order flow

Columns (1) and (2) of this table present the results from subsets of the following regres-
sion:

ri,t = ρ0 + ρ1 × ri,t−1 + ρ2 × |Retail OIB|i,t−1 + ρ3 × ri,t−1 × |Retail OIB|i,t−1 + ϵi,t,

where ri,t is the return on stock i in month t. Column (1) only uses the lagged return ri,t−1

as the right-hand variable. For column (2), we compute |Retail OIB|i,t as follows: We
first calculate

Net Retail Buyi,t =
Retail Buyi,t −Retail Selli,t

Retail Buyi,t +Retail Selli,t
,

where Retail Buyi,t and Retail Selli,t are the number of shares of stock i bought and sold
by small investors in month t, as reported in TAQ. We subtract the cross-sectional mean
of Net Retail Buyi,t and then divide by the cross-sectional standard deviation to com-
pute Retail OIBi,t−1. The absolute value of this quantity is denoted by |Retail OIB|i,t−1.
Column (3) of the regression replaces |Retail OIB|i,t with the variable σ(Retail OIB)i,t,
where the latter is calculated as follows. We first compute

Net Retail Buyi,j,t =
Retail Buyi,j,t −Retail Selli,j,t

Retail Buyi,j,t +Retail Selli,j,t
,

where Retail Buyi,j,t and Retail Selli,j,t are the number of shares of stock i bought and
sold by retail investors on day j of month t, as reported in TAQ. The monthly standard
deviation of this quantity is denoted by σ(Retail OIB)i,t, which is then cross-sectionally
standardized. The table reports the regression coefficients and the corresponding t-
statistics (in parentheses). The coefficients and the standard errors used to compute the
t-statistics are estimated using the Fama-MacBeth method. The sample is comprised of
all common stocks on CRSP that we are able to match with TAQ. The sample period is
from November 2006 to December 2021.

(1) (2) (3)

ri,t−1 −0.0212 −0.0102 −0.0181
(t-stat.) (−2.83) (−1.33) (−2.61)
|Retail OIB|i,t−1 0.0003
(t-stat.) (0.34)
ri,t−1 × |Retail OIB|i,t−1 −0.0244
(t-stat.) (−3.18)
σ(Retail OIB)i,t−1 0.0007
(t-stat.) (0.85)
ri,t−1 × σ(Retail OIB)i,t−1 −0.013
(t-stat.) (−3.60)
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Appendix A: Proofs

Proof of Proposition 1: Conjecture that the prices take the forms in Proposition 1. In

what follows, we verify the conjectured prices and solve for the pricing parameters. We

use backward induction. Informed investors have the information sets {f, z1} at Date 1,

{f, F, z1, z2} at Date 2, and {f, F, s, z1, z2, z3} at Date 3; they have no information at Date

0. Since uninformed investors learn ω = s + δz3 from the Date-3 price, they have the

information sets {f, z1} at Date 1, {f, F, z1, z2} at Date 2, and {f, F, ω, z1, z2} at Date 3;

they have no information at Date 0.

Date 3: Note that s dominates f and F in providing information for the payoff θ. The

i’th informed investor believes that θ|s ∼ N(γηs, νθ|s), where γη and νθ|s are constants

depending on the variance-covariance matrix of θ and s conditional on the investor’s

belief. Write the investor’s wealth at Date 4 as Wi4 = Wi3 +Xi3(θ − P3). The demand Xi3

maximizes

Eη3 [U(Wi4)] = Eη3 [−exp(−AWi4)]

= Eη3 [−exp [−AWi3 − AXi3(θ − P3)]]

= −exp
[
−AWi3 − AXi3 (γηs− P3) + 0.5A2X2

i3νθ|s
]
, (A.1)

where Eηt(.) indicates an expectation based on informed investors’ beliefs and informa-

tion set at Date t. The first order condition (f.o.c.) with respect to (w.r.t.) Xi3 implies that

the demand can be expressed as:

Xη3 =
γηs− P3

Aνθ|s
. (A.2)

The second order condition obviously holds in the above case, and all other cases below,

so that we omit referencing it in the rest of the proofs.

Since F dominates f in providing information for θ, the i’th uninformed investor be-

lieves that θ|(ω, F ) ∼ N(γℓωω + γℓFF, κθ|ω,F ), where the γ’s and κθ|ω,F are constants de-

pending on the variance-covariance matrix of θ, ω, and F based on the investor’s belief.
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The demand Xi3 maximizes

Eℓ3 [U(Wi4)] = Eℓ3 [−exp(−AWi4)]

= Eℓ3 [−exp [−AWi3 − AXi3(θ − P3)]]

= −exp
[
−AWi3 − AXi3 (γℓωω + γℓFF − P3) + 0.5A2X2

i3κθ|ω,F
]
, (A.3)

where Eℓt(.) indicates taking an expectation based on uninformed investors’ beliefs and

information set at Date t. The f.o.c. w.r.t. Xi3 implies that the demand can be expressed

as:

Xℓ3 =
γℓωω + γℓFF − P3

Aκθ|ω,F
. (A.4)

The market clearing condition, λXη3+(1−λ)Xℓ3+ z3+µz2 = 0, implies that the Date-3

price takes the form:

P3 = γ1ω + γ2F + γ3µz2, (A.5)

where the parameters

γ1 =
λν−1

θ|sγη + (1− λ)κ−1
θ|ω,Fγℓω

λν−1
θ|s + (1− λ)κ−1

θ|ω,F
, γ2 =

(1− λ)κ−1
θ|ω,FγℓF

λν−1
θ|s + (1− λ)κ−1

θ|ω,F
,

γ3 =
A

λν−1
θ|s + (1− λ)κ−1

θ|ω,F
, and δ =

A

λν−1
θ|sγη

.

Denote S =

(
s
z3

)
and Ψ =

(
F
z2

)
. From Equations (A.1), (A.2), and (A.5), the i’th

informed investor’s value function at Date 3 can be expressed as

Jη3(Wi3,S,Ψ) = Eη3 [U(Wi4)]

= −exp
[
−AWi3 − 0.5 (γηs− P3)

2 /νθ|s
]

= −exp
(
−AWi3 − 0.5STd1S − STd12Ψ − 0.5ΨTd2Ψ

)
, (A.6)

where the d’s are constants. From Equations (A.3), (A.4), and (A.5), the i’th uninformed

investor’s Date 3 value function is

Jℓ3(Wi3,S,Ψ) = Eℓ3 [U(Wi4)]

= −exp
[
−AWi3 − 0.5(γℓωω + γℓFF − P3)

2/κθ|ω,F
]

= −exp
(
−AWi3 − 0.5ST e1S − ST e12Ψ − 0.5ΨT e2Ψ

)
, (A.7)
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where the e’s are constants.

Date 2: Express P3 in Equation (A.5) as

P3 = CTS + γ2F + γ3µz2,

where C is a constant. The i’th informed investor believes that S|F ∼ N(βηF, νS|F ), where

βη and νS|F are constants depending on the variance-covariance matrix of S and F based

on the investor’s belief. Consider the investor’s value function in Equation (A.6). Write

the wealth at Date 3 as Wi3 = Wi2 +Xi2(P3 − P2). The demand Xi2 maximizes

Eη2 [Jη3(Wi3,S,Ψ)] (A.8)

= Eη2
[
−exp

(
−AWi3 − 0.5STd1S − STd12Ψ − 0.5ΨTd2Ψ

)]
= Eη2

[
−exp

[
−AWi2 − AXi2

(
CTS + γ2F + γ3µz2 − P2

)
−0.5STd1S − STd12Ψ − 0.5ΨTd2Ψ

]]
∝ −exp

[
−AWi2 − AXi2 (γ2F + γ3µz2 − P2) + 0.5

(
AXi2C + d12Ψ − ν−1

S|FβηF
)T

(ν−1
S|F + d1)

−1
(
AXi2C + d12Ψ − ν−1

S|FβηF
)
− 0.5(βηF )

Tν−1
S|F (βηF )− 0.5ΨTd2Ψ

]
.

Here and in what follows, we repeatedly use the fact in Footnote 40.40 The f.o.c. w.r.t. Xi2

implies that the demand can be expressed as

Xη2 =
γ2F + γ3µz2 − P2 − CT (ν−1

S|F + d1)
−1(d12Ψ − ν−1

S|FβηF )

ACT (ν−1
S|F + d1)−1C

=
βη1F + γ3µz2 − βη3z2 − P2

AΣη2
, (A.9)

where the β’s and Ση2 are constants.

The i’th uninformed investor believes that S|F ∼ N(βℓF, κS|F ), where βℓ and κS|F

are constants depending on the variance-covariance matrix of S and F based on the in-

vestor’s belief. Consider the investor’s value function in Equation (A.7). The demand Xi2

40 x can be a vector or scalar, where n is the dimension of x. If x ∼ N(x̄,Σ ), then

E
[
exp(ϱTx− 0.5xTΛx)

]
=

exp
[
0.5(ϱ+ Σ−1x̄)T (Σ−1 + Λ)−1(ϱ+ Σ−1x̄)− 0.5x̄TΣ−1x̄

]
(|Σ−1 + Λ||Σ |)0.5

.
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maximizes

Eℓ2 [Jℓ3(Wi3,S,Ψ)] (A.10)

= Eℓ2
[
−exp

(
−AWi3 − 0.5ST e1S − ST e12Ψ − 0.5ΨT e2Ψ

)]
= Eℓ2

[
−exp

[
−AWi2 − AXi2

(
CTS + γ2F + γ3µz2 − P2

)
−0.5ST e1S − ST e12Ψ − 0.5ΨT e2Ψ

]]
∝ −exp

[
−AWi2 − AXi2 (γ2F + γ3µz2 − P2) + 0.5

(
AXi2C + e12Ψ − κ−1

S|FβℓF
)T

(κ−1
S|F + e1)

−1
(
AXi2C + e12Ψ − κ−1

S|FβℓF
)
− 0.5(βℓF )

Tκ−1
S|F (βℓF )− 0.5ΨT e2Ψ

]
.

The f.o.c. w.r.t. Xi2 implies that the demand can be expressed as

Xℓ2 =
γ2F + γ3µz2 − P2 − CT (κ−1

S|F + e1)
−1(e12Ψ − κ−1

S|FβℓF )

ACT (κ−1
S|F + e1)−1C

=
βℓ1F + γ3µz2 − βℓ3z2 − P2

AΣℓ2
, (A.11)

where the β’s and Σℓ2 are constants.

The market clearing condition, λXη2+(1−λ)Xℓ2+ z2+µz1 = 0, implies that the Date-2

price P2 takes the form

P2 = β1F + γ3µz2 + β2(z2 + µz1)− β3z2, (A.12)

where the parameters

β1 =
λΣη2

−1βη1 + (1− λ)Σℓ2
−1βℓ1

λΣη2
−1 + (1− λ)Σℓ2

−1 , β2 =
A

λΣη2
−1 + (1− λ)Σℓ2

−1 , and

β3 =
λΣη2

−1βη3 + (1− λ)Σℓ2
−1βℓ3

λΣη2
−1 + (1− λ)Σℓ2

−1 .

From Equations (A.8), (A.9), and (A.12), the i’th informed investor’s value function at

Date 2 can be expressed as

Jη2(Wi2,Ψ , z1) = Eη2 [Jη3(Wi3,S,Ψ)]

∝ −exp

[
−AWi2 − 0.5

(βη1F + γ3µz2 − βη3z2 − P2)
2

Ση2
+ 0.5

(
d12Ψ − ν−1

S|FβηF
)T

(ν−1
S|F + d1)

−1
(
d12Ψ − ν−1

S|FβηF
)
− 0.5(βηF )

Tν−1
S|F (βηF )− 0.5ΨTd2Ψ

]
= −exp

(
−AWi2 − 0.5ΨTh1Ψ −ΨTh12z1 − 0.5h2z

2
1

)
, (A.13)
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where the h’s are constants. From Equations (A.10), (A.11), and (A.12), the i’th unin-

formed investor’s value function at Date 2 can be expressed as

Jℓ2(Wi2,Ψ , z1) = Eℓ2 [Jℓ3(Wi3,S,Ψ)]

∝ −exp

[
−AWi2 − 0.5

(βℓ1F + γ3µz2 − βℓ3z2 − P2)
2

Σℓ2
+ 0.5

(
e12Ψ − κ−1

S|FβℓF
)T

(κ−1
S|F + e1)

−1
(
e12Ψ − κ−1

S|FβℓF
)
− 0.5(βℓF )

Tκ−1
S|F (βℓF )− 0.5ΨT e2Ψ

]
= −exp

(
−AWi2 − 0.5ΨTg1Ψ −ΨTg12z1 − 0.5g2z

2
1

)
, (A.14)

where the g’s are constants.

Date 1: Express P2 in Equation (A.12) as

P2 = BTΨ + β2µz1,

whereB is a constant. The i’th informed investor believes that Ψ |f ∼ N(αηf, νΨ |f ), where

αη and νΨ |f are constants depending on the variance-covariance matrix of Ψ and f based

on the investor’s belief. Consider the investor’s value function in Equation (A.13). Write

the wealth at Date 2 as Wi2 = Wi1 +Xi1(P2 − P1). The demand Xi1 maximizes

Eη1 [Jη2(Wi2,Ψ , z1)]

∝ Eη1
[
−exp

(
−AWi2 − 0.5ΨTh1Ψ −ΨTh12z1 − 0.5h2z

2
1

)]
= Eη1

[
−exp

[
−AWi1 − AXi1

(
BTΨ + β2µz1 − P1

)
−0.5ΨTh1Ψ −ΨTh12z1 − 0.5h2z

2
1

]]
∝ −exp

[
−AWi1 − AXi1 (β2µz1 − P1) + 0.5

(
AXi1B + h12z1 − ν−1

Ψ |fαηf
)T

(ν−1
Ψ |f + h1)

−1
(
AXi1B + h12z1 − ν−1

Ψ |fαηf
)
− 0.5(αηf)

Tν−1
Ψ |f (αηf)− 0.5h2z

2
1

]
.(A.15)

The f.o.c. w.r.t. Xi1 implies that the demand can be expressed as

Xη1 =
β2µz1 − P1 −BT (ν−1

Ψ |f + h1)
−1(h12z1 − ν−1

Ψ |fαηf)

ABT (ν−1
Ψ |f + h1)−1B

=
αη1f + β2µz1 − αη3z1 − P1

AΣη1
, (A.16)
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where the α’s and Ση1 are constants.

The i’th uninformed investor believes that Ψ |f ∼ N(αℓf, κΨ |f ), where αℓ and κΨ |f

are constants depending on the variance-covariance matrix of Ψ and f based on the in-

vestor’s belief. Consider the investor’s value function in Equation (A.14). The demand

Xi1 maximizes

Eℓ1 [Jℓ2(Wi2,Ψ , z1)]

∝ Eℓ1
[
−exp

(
−AWi2 − 0.5ΨTg1Ψ −ΨTg12z1 − 0.5g2z

2
1

)]
= Eℓ1

[
−exp

[
−AWi1 − AXi1

(
BTΨ + β2µz1 − P1

)
−0.5ΨTg1Ψ −ΨTg12z1 − 0.5g2z

2
1

]]
∝ −exp

[
−AWi1 − AXi1 (β2µz1 − P1) + 0.5

(
AXi1B + g12z1 − κ−1

Ψ |fαℓf
)T

(κ−1
Ψ |f + g1)

−1
(
AXi1B + g12z1 − κ−1

Ψ |fαℓf
)
− 0.5(αℓf)

Tκ−1
Ψ |f (αℓf)− 0.5g2z

2
1

]
.(A.17)

The f.o.c. w.r.t. Xi1 implies that the demand can be expressed as

Xℓ1 =
β2µz1 − P1 −BT (κ−1

Ψ |f + g1)
−1(g12z1 − κ−1

Ψ |fαℓf)

ABT (κ−1
Ψ |f + g1)−1B

=
αℓ1f + β2µz1 − αℓ3z1 − P1

AΣℓ1
, (A.18)

where the α’s and Σℓ1 are constants.

The market clearing condition, λXη1+(1−λ)Xℓ1+ z1 = 0, implies that the Date-1 price

P1 takes the form

P1 = α1f + β2µz1 + α2z1, (A.19)

where the parameters

α1 =
λΣη1

−1αη1 + (1− λ)Σℓ1
−1αℓ1

λΣη1
−1 + (1− λ)Σℓ1

−1 ,

α2 =
A

λΣη1
−1 + (1− λ)Σℓ1

−1 − λΣη1
−1αη3 + (1− λ)Σℓ1

−1αℓ3

λΣη1
−1 + (1− λ)Σℓ1

−1 .
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Denote ψ =

(
f
z1

)
. From Equations (A.15), (A.16), and (A.19), the i’th informed

investor’s value function at Date 1 can be expressed as

Jη1(Wi1, ψ) = Eη1 [Jη2(Wi2, ψ, z1)]

∝ −exp

[
−AWi1 − 0.5

(αη1f + β2µz1 − αη3z1 − P1)
2

Ση1
+ 0.5

(
h12z1 − νψ|fαηf

)T
(ν−1
ψ|f + h1)

−1
(
h12z1 − νψ|fαηf

)
− 0.6(αηf)

Tνψ|f (αηf)− 0.5h2z
2
1

]
= −exp

(
−AWi1 − 0.5ψT qηψ

2
)
, (A.20)

where qη is a constant. We can similarly show that the i’th uninformed investor’s value

function at Date 1 can be expressed as

Jℓ(Wi1, z1) ∝ −exp
(
−AWi1 − 0.5ψT qℓψ

)
,

where qℓ is a constant.

Date 0: Express P1 in Equation (A.19) as

P1 = Qψ,

where Q is a constant. Consider the i’th informed investor’s value function in Equa-

tion (A.20). Write the wealth at Date 1 as Wi1 = Wi0 + Xi0(P1 − P0). The demand Xi0

maximizes

Eη0 [Jη1(Wi1, ψ)] ∝ Eη0
[
−exp

(
−AWi1 − 0.5ψT qηψ

)]
= Eη0

[
−exp

[
−AWi0 − AXi0 (Qψ − P0)− 0.5ψT qηψ

]]
∝ −exp

[
−AWi0 − AXi0 (−P1) + 0.5 (AXi0Q)

T (ν−1
ψ + qη)

−1 (AXi0Q)
2

]
.

The f.o.c. w.r.t. Xi1 implies that the demand Xη0 ∝ −P0. We can use a similar analysis

to show that the i’th uninformed investor’s demand Xℓ0 ∝ −P0. The market clearing

condition, λXη0 + (1− λ)Xℓ0 = 0, implies that the Date-0 price P0 = 0. □

Proof of Lemma 1: The proof of this Lemma uses notation set out just prior to the state-

ment of Proposition 2. Specifically, let the subscript ℓ indicate that the expectation is based
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on uninformed beliefs, and denote Eℓ(θ|s) ≡ νθ1κ
−1
s s and κθ|s ≡ νθ − ν2θ1κ

−1
s as the mean

and variance of θ conditional on s. Further, let κEℓ(θ|s)|F ≡ (ν2θ1/κs)(1− κsκ
−1
F ) be the vari-

ance of Eℓ(θ|s) conditional on F . We use backward induction to solve for the prices. Note

that the net noise demands at Dates 1, 2, and 3 are, respectively, z1, z2 + µz1, and µz2.

Date 3: Noting that uninformed investors also learn s, we can use the same derivation

as in the proof of Proposition 1 to show that the i’th uninformed investor chooses the

demand Xi3 to maximize

Eℓ3 [U(Wi4)] = −exp
[
−AWi3 − AXi3 (cℓs− P3) + 0.5A2X2

i3κθ|s
]
,

where cℓ = νθ1/κs. The f.o.c. w.r.t. Xi3 implies that the demand can be expressed as

Xℓ3 =
cℓs− P3

Aκθ|s
.

The market clearing condition, Xℓ3 + µz2 = 0, implies that the Date-3 price takes the form

P3 = cℓs+ c3µz2,

where c3 = Aκθ|s = A(νθ − ν2θ1κ
−1
s ). It follows that the i’th uninformed investor’s value

function at Date 3 can be expressed as

Jℓ3(Wi3, z2) = Eℓ3 [U(Wi4)] = −exp
[
−AWi3 − 0.5Ac3(µz2)

2
]
.

Date 2: Write the i’th uninformed investor’s wealth at Date 3 as Wi3 = Wi2 +Xi2(P3 −

P2). The demand Xi2 maximizes

Eℓ2 [Jℓ3(Wi3, z2)]

= Eℓ2
[
−exp

[
−AWi3 − 0.5Ac3(µz2)

2
]]

= Eℓ2

[
−exp

[
−AWi2 − AXi2 (cℓs+ c3µz2 − P2)− 0.5Ac3(µz2)

2
]]

∝ −exp

[
−AWi2 − AXi2 (cℓEℓ(s|F ) + c3µz2 − P2) + 0.5(AXi2cℓ)

2κs|F − 0.5Ac3(µz2)
2

]
.

The f.o.c. w.r.t. Xi2 implies that the demand can be expressed as

Xℓ2 =
cℓEℓ(s|F ) + c3µz2 − P2

Ac2ℓκs|F
=
νθ1κ

−1
F F + c3µz2 − P2

Ac2ℓκs|F
.
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The market clearing condition, Xℓ2 + z2 + µz1 = 0, implies that the Date-2 price P2 takes

the form

P2 =
νθ1
κF

F + c3µz2 + b2(z2 + µz1),

where b2 = Ac2ℓκs|F = A(ν2θ1/κs)(1−κsκ
−1
F ). The i’th uninformed investor’s value function

at Date 2 can be expressed as

Jℓ2(Wi2, z2, z1) = Eℓ2 [Jℓ3(Wi3, z2)]

∝ −exp
[
−AWi2 − 0.5Ab2(z2 + µz1)

2 − 0.5Ac3(µz2)
2
]
.

Date 1: Write the i’th uninformed investor’s wealth at Date 2 as Wi2 = Wi1 +Xi1(P2 −

P1). The demand Xi1 maximizes

Eℓ1 [Jℓ2(Wi2, z2, z1)]

∝ Eℓ1
[
−exp

(
−AWi2 − 0.5Ab2(z2 + µz1)

2 − 0.5Ac3(µz2)
2
)]

= Eℓ1

[
−exp

[
−AWi1 − AXi1

(
νθ1
κF

F + c3µz2 + b2(z2 + µz1)− P1

)
−0.5Ab2(z2 + µz1)

2 − 0.5Ac3(µz2)
2
]]

∝ −exp

[
−AWi1 − AXi1

(
νθ1
κF

Eℓ(F |f) + b2µz1 − P1

)
+ 0.5A2X2

i1

(
νθ1
κF

)2

κF |f

+0.5
[AXi1 (b2 + c3µ) + Ab2µz1]

2

ν−1
z + Ab2 + Ac3µ2

− 0.5Ab2(µz1)
2

]
.

The f.o.c. w.r.t. Xi1 implies that the demand can be expressed as

Xℓ1 =
νθ1κF

−1Eℓ(F |f) + b2µz1 − P1 − a2z1
a1

=
νθ1κf

−1f + b2µz1 − P1 − a2z1
a1

,

where

a1 = A
ν2θ1
κF

(
1− κF

κf

)
+ A

(b2 + c3µ)
2

ν−1
z + Ab2 + Ac3µ2

, and a2 = A
(b2 + c3µ) b2

ν−1
z + Ab2 + Ac3µ2

µ.

The market clearing condition, Xℓ1 + z1 = 0, implies that the Date-1 price P1 takes the

form

P1 =
νθ1
κf
f + b2µz1 + (a1 − a2)z1.
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It is straightforward to show that if 0 ≤ µ ≤ 1, then a ≡ a1 − a2 > 0. We can use a similar

derivation as in the proof of Proposition 1 to show that here P0 = 0. □

Proof of Proposition 2: Denote

∆ ≡ A(ν2θ1/κs)(1− κsκ
−1
F ).

Further, let SK and LK respectively denote the values of S and L when νz = 0. We then

have

SK ≡ Cov [Eℓ(θ|f), Eℓ(θ|F )− Eℓ(θ|f)] + Cov [Eℓ(θ|F )− Eℓ(θ|f), Eℓ(θ|s)− Eℓ(θ|F )]

+Cov [Eℓ(θ|s)− Eℓ(θ|F ), θ − Eℓ(θ|s)] . (A.21)

LK ≡ νθ1
κF

(
νθ −

νθ1
κF

νF

)
. (A.22)

We assume a range for the scale of noise trades, νz, that represents a sufficient condition

for short-term reversals (which obtain for high νz) as well as longer term momentum

(which require low νz):41

νz ∈
[
max

(
SK ,Cov (Eℓ(θ|F ), Eℓ(θ|s)− Eℓ(θ|F ))

)
∆2

,
LK

∆2

]
. (A.23)

Condition (A.23) implies that z1 and z2 have a significant but modest scale.

For Part (i) of this proposition, note that the momentum parameter

L = Cov(P2 − P0, P4 − P2) = LK − (c3µ+ b2)
2νz − (b2µ)

2νz, (A.24)

where

LK = Cov(Eℓ(θ|F ), θ − Eℓ(θ|F )) = Cov

(
νθ1
κF

F, θ − νθ1
κF

F

)
It is obvious that L < LK , that L decreases in µ, and that if µ = 0, then L > 0 under

Condition (A.23). Since all endogenous parameters are continuous in µ, Part (i) follows.

41A sufficient condition for Condition (A.23) to specify a non-empty set of parameter values is:

0 <
ν1
κf

(
νζ
κf

− νϵ
κs

) <
νξ
κ2
s

(κs − νϵ).
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Turning to Part (ii) of the proposition, denote a ≡ a1 − a2. From Lemma 1, we have

Cov(P1 − P0, P2 − P1)

= Cov (Eℓ(θ|f), Eℓ(θ|F )− Eℓ(θ|f))− (b2µ+ a)aνz,

and

Cov(P2 − P1, P3 − P2)

= Cov (Eℓ(θ|F )− Eℓ(θ|f), Eℓ(θ|s)− Eℓ(θ|F ))− (c3µ+ b2) b2νz + (b2µ)aνz,

and

Cov(P3 − P2, P4 − P3)

= Cov (Eℓ(θ|s)− Eℓ(θ|F ), θ − Eℓ(θ|s)) + (c3µ) b2νz.

It also follows that the short-run reversals parameter

S ∝ Cov(P1 − P0, P2 − P1) + Cov(P2 − P1, P3 − P2) + Cov(P3 − P2, P4 − P3)

= SK − a2νz − b22νz, (A.25)

where SK is defined in Equation (A.21), and a ≡ a1−a2. It is straightforward to show after

taking derivatives that S decreases in νz. It is obvious that S < 0 under Condition (A.23).

Further, note that S depends on µ only through a, and dS/da < 0. Now,

da

dµ
∝ 2 (b2 + c3µ) c3

(
1

νz
+ Ab2 + Ac3µ

2

)
− 2Ac3 (b2 + c3µ)

2 µ

−
[
b2 (b2 + 2c3µ)

(
1

νz
+ Ab2 + Ac3µ

2

)
− 2Ac3 (b2 + c3µ) b2µ

2

]
=

[
2 (b2 + c3µ) c3 − b2 (b2 + 2c3µ)

](
1

νz
+ Ab2 + Ac3µ

2

)
−2Ac3 (b2 + c3µ) (b2 + c3µ− b2µ)µ

<

[
2 (b2 + c3µ) c3 − b2 (b2 + 2c3µ)

](
1

νz
+ Ab2 + Ac3µ

2

)
∝ 2 (b2 + c3µ) c3 − b2 (b2 + 2c3µ)

< 2 (b2 + c3µ) c3 − b2 (b2 + c3µ)

∝ 2c3 − b2

= 2κθ|s − κEℓ(θ|s)|F ,
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where the first inequality obtains from µ ≤ 1, the second inequality obtains from µ ≥ 0,

and the last equality obtains from the expressions of c3 and b2 in the proof of Lemma 1.

Whenever 2κθ|s < κEℓ(θ|s)|F , da/dµ < 0; so that S increases in µ.

For Part (iii) of the Proposition, set µ = 0. Then, note from Equation (A.24) that L

decreases in νz. Similarly, from Equation (A.25), S < 0 decreases in νz (i.e., S becomes

more negative as νz increases). Given that all endogenous parameters are continuous in

µ, Part (iii) follows. □

Proof of Proposition 3: Note from the proof of Proposition 2 that

L∗ = L − Cov(P2 − P0, P3 − P2),

where

Cov(P2 − P0, P3 − P2)

= Cov (Eℓ(θ|F ), Eℓ(θ|s)− Eℓ(θ|F ))− (c3µ+ b2)b2νz − (b2µ)
2νz

< Cov (Eℓ(θ|F ), Eℓ(θ|s)− Eℓ(θ|F ))− b22νz

< 0,

where the last inequality obtains under Condition (A.23).

From Lemma 1,

L∗ = Cov(P2 − P0, P4 − P3) = Cov (Eℓ(θ|F ), θ − Eℓ(θ|s))− (c3µ+ b2)c3µνz

decreases in νz. □

Proof of Proposition 4: Note from Lemma 1 that

S(2) =
Cov(P1 − P0, P3 − P2) + Cov(P2 − P1, P4 − P3)

2

∝
[
Cov (Eℓ(θ|f), Eℓ(θ|s)− Eℓ(θ|F )) + Cov (Eℓ(θ|F )− Eℓ(θ|f), θ − Eℓ(θ|s))

]
−(b2µ+ a)b2µνz − (c3µ+ b2)c3µνz.

It is straightforward to show that the value in the bracket is proportional to νθ−νθ1 > 0. It

follows that if µ = 0, then S(2) does not depend on νz, and S(2) > 0. If µ > 0, S(2) decreases
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in νz (note that a ≡ a1 − a2 in Lemma 1 increases in νz), and b2 and c3 do not involve νz.

Thus, as νz increases from zero, S(2) starts positive, and eventually turns negative.

Also from Lemma 1,

S(3) = Cov(P1 − P0, P4 − P3)

= Cov (Eℓ(θ|f), θ − Eℓ(θ|s)) = Cov

(
νθ1
κf
f, θ − νθ1

κs
s

)
=

νθ1
κf

(
νθ −

νθ1
κs
νs

)
∝ νθ − νθ1 > 0.

□

Proof of Proposition 5: Note from Lemma 1 that

Cov(P2 − P1, P4 − P3)

= Cov (Eℓ(θ|F )− Eℓ(θ|f), θ − Eℓ(θ|s))− (c3µ+ b2)c3µνz.

If µ = 0, then

Cov(P2 − P1, P4 − P3) = Cov (Eℓ(θ|F )− Eℓ(θ|f), θ − Eℓ(θ|s)) > 0, (A.26)

where the inequality obtains from noting that

Cov (Eℓ(θ|F )− Eℓ(θ|f), θ − Eℓ(θ|s)) = Cov

(
νθ1
κF

F − νθ1
κf
f, θ − νθ1

κs
s

)
=

(
νθ1
κF

− νθ1
κf

)(
νθ −

νθ1
κs
νs

)
∝ νθ − νθ1 > 0.

Also from Lemma 1,

Cov(P2 − P1, P3 − P2)

= Cov (Eℓ(θ|F )− Eℓ(θ|f), Eℓ(θ|s)− Eℓ(θ|F ))− (c3µ+ b2) b2νz + (b2µ)aνz.

If µ = 0, then

Cov(P2 − P1, P3 − P2)

= Cov (Eℓ(θ|F )− Eℓ(θ|f), Eℓ(θ|s)− Eℓ(θ|F ))− b22νz (A.27)

and decreases in νz.
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Also, from Lemma 1, since 0 ≤ µ ≤ 1,

a = a1 − a2 ≥ A
ν2θ1
κF

(
1− κF

κf

)
.

For a >
√
3b2, it suffices that

A
ν2θ1
κF

(
1− κF

κf

)
>

√
3A(ν2θ1/κs)(1− κsκ

−1
F ),

which requires νζ/κf >
√
3νϵ/κs. In this case, it follows from the proof of Proposition 2

that

S =
SK − a2νz − b22νz

3
<

SK − 3b2
2νz − b22νz
3

< −b22νz < Cov(P2 − P1, P3 − P2),

where the second inequality obtains under Condition (A.23), and the last inequality ob-

tains from Equation (A.27). Since all functions are continuous, the proposition follows.

□
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Appendix B: An Infinite Horizon Setting

In this appendix, we extend our model in the main paper to an infinite horizon setting.42

We further show that some assumptions in the main paper, specifically, normalizing the

unconditional mean of the liquidation value V to be zero, and the return of the risk-free

asset Rf to be one, are not required for our results on momentum and reversals.

The economy is divided into an infinite sequence of periods. There are five dates in

a given period T : 0, 1, 2, 3, and 4. Date 4 of period T is also the beginning (Date 0) of

period T + 1. At Date 4 of every period T , the risky stock pays a dividend dT = d̄T + θT ,

where d̄T is the unconditional mean of the risky asset’s payoff and θT is a random normal

variable (note that the main paper assumes a zero mean). The θT ’s at different periods are

independent of each other. The signals and noise trades corresponding to a set of dates in

a period T are subscripted by T and these are also i.i.d. across different periods.

In each period T , the i’th informed or uninformed investor trades at every date within

that period, and consumes only at Date 4. The utility of consumption at Date 4 in period

T is the standard exponential:

U(Ci4T ) = − exp(−AcCi4T ),

where Ac is the risk aversion coefficient. We can use the standard “conjecture-verify”

approach in dynamic programming (see, e.g., Wang (1994)) to show that the i’th informed

or uninformed investor’s value function at Date 4 takes the form:

Jη(Wi4T ) = − exp(−AWi4T −QηT ), andJℓ(Wi4T ) = − exp(−AWi4T −QℓT ),

where A = Ac(1−R−4
f ), and the Q’s are constant parameters. We can use a similar deriva-

tion as in the proof of Proposition 1 in the main paper to show that the (ex-dividend)

42See also, for example, Holden and Subrahmanyam (2002) (Section II) for a similar exercise.
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prices of the risky stock at Dates 0, 1, 2, and 3 can be expressed as:

P3T =
V̄T + d̄T + γ1ωT + γ2FT + γ3µz2T

Rf

,

P2T =
V̄T + d̄T + β1FT + γ3µz2T + β2(z2T + µz1T )− β3z2T

R2
f

,

P1T =
V̄T + d̄T + α1f + β2µz1T + α2z2T

R3
f

,

P0T =
V̄T + d̄T
R4
f

,

where ωT ≡ sT+δz3T , α’s, β’s, γ’s, and δ are constants as given in the proof of Proposition 1

of the paper, and V̄T represents the ex-dividend price at Date 4 of the T th period, which

is specified according to the recursive formula V̄T−1 = R−4(V̄T + d̄T ).

Consider the following contrarian investments:

• At Date 1, sell (buy) R3
f |P1T − RfP0T | shares of the stock if P1T − RfP0T is positive

(negative), and liquidate this position at Date 2; invest the proceeds in the risk-free

asset until Date 4. The expected profit (in excess of the risk-free interest rate) from

this investment is

−R5
fCov(P1T −RfP0T , P2T −RfP1T ).

• At Date 2, sell (buy) R2
f |P2T − RfP1T | shares of the stock if P2T − RfP1T is positive

(negative), and liquidate this position at Date 3; invest the proceeds in the risk-free

asset until Date 4. The expected profit from this investment is

−R3
fCov(P2T −RfP1T , P3T −RfP2T ).

• At Date 3, sell (buy) Rf |P3T − RfP2T | shares of the stock if P3T − RfP2T is posi-

tive (negative), and liquidate this position at Date 4. The expected profit from this

investment is

−RfCov(P3T −RfP2T , P4T −RfP3T ).
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Note that here we scale up the earlier investments, and allow reinvestment in the risk-

free asset; this ensures that the three investments produce payoffs of similar scales. The

average profit from these contrarian investments can be expressed as:

−1

3

3∑
t=1

[
R7−2t
f Cov(PtT −RfPt−1,T , Pt+1,T −RfPtT )

]
.

It is straightforward to verify that this profit is opposite in sign to the short-term pre-

dictability measure in the main paper, S (see Equation (1)).

Also consider the following momentum investment: at Date 2, buy (sell) R2
f |P2T −

R2
fP0T | shares of the stock if P2T−R2

fP0T is positive (negative), and hold this position until

Date 4. The expected profit (in excess of the risk-free interest rate) from this momentum

investment can be expressed as:

R2
fCov(P2T −R2

fP0T , P4T −R2
fP2T ).

It is straightforward to verify that this profit is proportional to the long-term predictability

measure in the main paper, L (see Equation (2)).

In sum, our analysis here shows that our model holds within an infinite horizon set-

ting. In addition, normalizing the unconditional mean of the risky asset’s payoff V to be

zero and the gross risk-free interest rate Rf to be one (as in the main paper) is without

loss of generality.
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